NECESSARY AND SUFFICIENT CONDITIONS FOR SIMPLE A-BASES

Carl Swenson and Calvin Long

Abstract

Let A be a set of m distinct integers with $m \geq 2$ and $0 \in A$. It is shown that A possesses a simple A-base if and only if A is a complete residue system modulo m and the elements of A are relatively prime.

The notions of simple and non-simple A-bases, due to de Bruijn, are defined as follows.

Definition 1. Let A be as above. The integral sequence $B=\left\{b_{i}\right\}_{i \geq 1}$ is called an A-base for the set of integers provided that every integer n can be represented uniquely in the form

$$
n=\sum_{i=1}^{r(n)} a_{i} b_{i}, \quad a_{i} \in A \forall i .
$$

If (with possible rearrangement) B can be written in the form $B=$ $\left\{d_{i} m^{i-1}\right\}_{i \geq 1}$ where the d_{i} are integers, then it is called a simple A-base.

The notion of an A-base was generalized by Long and Woo to that of an \mathfrak{N}-base where $\mathfrak{\mathscr { H }}=\left\{A_{i}\right\}$ and each A_{i} is a set of m_{i} distinct integers with $0 \in A_{i}$ and $m_{i} \geq 2$ for all i. The definition is as follows.

Definition 2. Let \mathfrak{N} be as above. The integral sequence $B=\left\{b_{i}\right\}_{i \geq 1}$ is called an \mathfrak{U}-base for the set of integers provided every integer n can be written uniquely in the form

$$
n=\sum_{i=1}^{r(n)} a_{i} b_{i}, \quad a_{i} \in A_{i} \forall i .
$$

If (with possible rearrangement) B can be written in the form $B=$ $\left\{d_{i} M_{i-1}\right\}_{i \geq 1}$ where the d_{i} are integers and where $M_{0}=1$ and $M_{i}=$ $\prod_{j=1}^{i} m_{j}$ for $i \geq 1$, then it is called a simple \mathscr{N}-base.

De Bruijn has pointed out that it is not yet known for which A 's there exist simple A-bases nor it is known for which A 's there exist non-simple A-bases. He gives several examples and then observes that if A has a simple A-base it is necessary that A form a complete residue system

