WEAK CONVERGENCE AND NON-LINEAR ERGODIC THEOREMS FOR REVERSIBLE SEMIGROUPS OF NONEXPANSIVE MAPPINGS

ANTHONY TO-MING LAU AND WATARU TAKAHASHI

Let S be a semitopological semigroup. Let C be a closed convex subset of a uniformly convex Banach space E with a Fréchet differentiable norm and $\mathscr{G} = \{T_a; a \in S\}$ be a continuous representation of S as nonexpansive mappings of C into C such that the common fixed point set $F(\mathcal{S})$ of \mathcal{S} in C is nonempty. We prove in this paper that if S is right reversible (i.e. S has finite intersection property for closed right ideals), then for each $x \in C$, the closed convex set $W(x) \cap F(\mathscr{S})$ consists of at most one point, where $W(x) = \bigcap \{K_s(x); s \in S\}, K_s(x)$ is the closed convex hull of $\{T_t x; t \ge s\}$ and $t \ge s$ means t = s or $t \in Ss$. This result is applied to study the problem of weak convergence of the net $\{T_s x; s \in S\}$, with S directed as above, to a common fixed point of \mathcal{S} . We also prove that if E is uniformly convex with a uniformly Fréchet differentiable norm, S is reversible and the space of bounded right uniformly continuous functions on S has a right invariant mean, then the intersection $W(x) \cap F(\mathcal{S})$ is nonempty for each $x \in C$ if and only if there exists a nonexpansive retraction P of C onto $F(\mathcal{S})$ such that $PT_s = T_s P = P$ for all $s \in S$ and P(x) is in the closed convex hull of $\{T_s(x); s \in S\}, x \in C.$

1. Introduction. Let S be a semitopological semigroup i.e. S is a semigroup with a Hausdorff topology such that for each $s \in S$ the mappings $s \to a \cdot s$ and $s \to s \cdot a$ from S to S are continuous. S is called *right reversible* if any two closed left ideals of S has non-void intersection. In this case, (S, \leq) is a directed system when the binary relation " \leq " on S is defined by $a \leq b$ if and only if $\{a\} \cup \overline{Sa} \supseteq \{b\} \cup \overline{Sb}$, $a, b \in S$. Right reversible semitopological semigroups include all commutative semigroups and all semitopological semigroups which are right amenable as discrete semigroups (see [13, p. 335]). Left reversibility of S is defined similarly. S is called *reversible* if it is both left and right reversible.

Let E be a uniformly convex Banach space and $\mathscr{S} = \{T_s; s \in S\}$ be a continuous representation of S as nonexpansive mappings on a closed convex subset C of E into C i.e. $T_{ab}(x) = T_a T_b(x)$, $a, b \in S$, $x \in C$ and the mapping $(s, x) \to T_s(x)$ from $S \times C$ into C is continuous when $S \times C$ has the product topology. Let $F(\mathscr{S})$ denote the set $\{x \in C;$ $T_s(x) = x$ for all $s \in S\}$ of common fixed points of \mathscr{S} in C. Then, as is