DERIVATIONS ON THE LINE AND FLOWS ALONG ORBITS

C. J. K. BATTY

The closure of the derivation $\lambda D: C_c^1(\mathbb{R}) \to C_0(\mathbb{R})$ defined by $(\lambda D)(f) = \lambda f'$, where $\lambda: \mathbb{R} \to \mathbb{R}$ is continuous, generates a C_0 -group on $C_0(\mathbb{R})$ (corresponding to a flow on \mathbb{R}) if and only if $1/\lambda$ is not locally integrable on either side of any zero of λ or at $\pm \infty$.

If S is a flow on a locally compact, Hausdorff, space X with fixed point set X_S^0 , δ_S is the generator of the induced action on $C_0(X)$, λ : $X \setminus X_S^0 \to \mathbb{R}$ is continuous, and bounded on sets of low frequency under S, and $t \to \lambda (S_t \omega)^{-1}$ is not locally integrable on either side of any zero or at $\pm \infty$, then the flows along the orbits of S form a flow on X whose generator acts as $\lambda \delta_S$.

1. Introduction. Let S be a flow on a locally compact, Hausdorff, space X, and δ_S be the generator of the associated one-parameter group of *-automorphisms of $C_0(X)$, the commutative C*-algebra of continuous complex-valued functions on X which vanish at infinity. Thus

$$\delta_S f = \lim_{t \to 0} t^{-1} (f \circ S_t - f)$$

whenever the limit exists (pointwise, and hence uniformly) and defines a function in $C_0(X)$. Let $\mathscr{D}_S^{\infty} = \bigcap_{n \ge 1} \mathscr{D}(\delta_S^n)$. Then \mathscr{D}_S^{∞} is a dense *-subalgebra of $C_0(X)$. If $\delta: \mathscr{D}_S^{\infty} \to C_0(X)$ is a *-derivation, then there is a function $\lambda: X \to \mathbb{R}$ such that

$$\delta f = \lambda \delta_S f \qquad (f \in \mathscr{D}_S^\infty)$$

[1]. The function λ may be chosen arbitrarily on the fixed point set X_S^0 :

$$\begin{aligned} X_S^0 &= \{ \omega \in X \colon S_t \omega = \omega \text{ for all } t \} \\ &= \{ \omega \in X \colon \delta_S f(\omega) = 0 \text{ for all } f \text{ in } \mathscr{D}_S^\infty \}, \end{aligned}$$

and we shall always assume that $\lambda = 0$ on X_S^0 . However, λ is uniquely determined and continuous on $X \setminus X_S^0$, and satisfies a bound of the form

(*)
$$|\lambda(\omega)| \le c(1 + \nu(\omega)^n) \quad (\omega \in X \setminus X^0_S)$$

for some constant $c \ge 0$, and integer $n \ge 0$, where $\nu(\omega)$ is the frequency of ω , so

$$\nu(\omega)^{-1} = \inf\{t > 0 \colon S_t \omega = \omega\}$$

 $(\nu(\omega) = 0 \text{ if } \omega \text{ is aperiodic}) (\text{see [4]}).$