PSEUDOGROUPS OF C^1 PIECEWISE PROJECTIVE HOMEOMORPHISMS

PETER GREENBERG

The group PSL_2R acts transitively on the circle $S^1 = R \cup \infty$, by linear fractional transformations. A homeomorphism $g\colon U \to V$ between open subsets of R is called C^1 , piecewise projective if g is C^1 , and if there is some locally finite subset S of U such that, on each component of U - S, g agrees with some element of PSL_2R . Let Γ_R be the pseudogroup of such homeomorphisms. We show that the Haefliger classifying space $B\Gamma_R$ is simply connected, and that there is a homology isomorphism $i\colon BPSL_2R \to B\Gamma_R$. (PSL_2R) is the universal cover of PSL_2R , considered as a discrete group.) As a consequence, the classifying space of the discrete group of compactly supported, C^1 piecewise projective homeomorphisms of R is a "homology loop space" of $BPSL_2R$.

- **1.1.** Introduction. More generally, let $F \subset \mathbb{R}$ be a subfield of \mathbb{R} . PSL₂F acts on the circle $\mathbb{R} \cup \infty$. The orbit of $1 \in F$ is $F \cup \infty$.
- 1.2. DEFINITION. Γ_F is the pseudogroup of C^1 homeomorphisms $g: U \to V$ between open subsets of \mathbb{R} , so that there is some locally finite subset S of $U \cap (F \cup \infty)$ such that, on each connected component of U S, g agrees with some element of PSL_2F .

The set of restrictions of elements of PSL_2F to open subsets of **R** forms a subpseudogroup of Γ_F whose classifying space, the total space of the circle bundle over $BPSL_2F$, is homotopy equivalent to $BPSL_2F$, where PSL_2F is defined as the pullback

$$\begin{array}{cccc} \widetilde{\mathrm{PSL}_2F} & \to & \widetilde{\mathrm{PSL}_2\mathbf{R}} \\ \downarrow & & \downarrow \\ \mathrm{PSL}_2F & \to & \mathrm{PSL}_2\mathbf{R} \end{array}$$

Therefore, there is an inclusion map $i: BPSL_2F \to B\Gamma_F$.

- 1.3. THEOREM. $\pi_1 B \Gamma_F = 0$, and i is a homology equivalence.
- 1.4. DEFINITION. The group of compactly supported Γ_F homeomorphisms, denoted K_F , is the group of elements of Γ_F which are compactly supported homeomorphisms of the line **R**.