UNIQUENESS OF INFINITE DELOOPINGS FOR *K*-THEORETIC SPACES

A. K. BOUSFIELD

A functor Φ_p is constructed from spaces to spectra such that, for each spectrum X, $\Phi_p \Omega^{\infty} X$ is the *p*-adic completion of the *K*-theoretic localization of *X*. This functor is used to obtain uniqueness results for infinite deloopings of *K*-theoretic spaces and maps, thereby generalizing results of Adams-Priddy and Madsen-Snaith-Tornehave. Non-unique deloopings of *K*-theoretic maps are shown to involve phantom maps of spectra, and such maps are analyzed.

Introduction. Let K be the spectrum of nonconnective complex K-theory and recall that the associated homology theory K_* determines a localization functor $(-)_K$ on the homotopy category of spaces and of spectra by [9], [10], and [12]. In this paper we establish a natural equivalence $\Phi_p \Omega^{\infty} X \simeq (X_K)_p^{\wedge}$ for each prime p and spectrum X, where $\Omega^{\infty} X$ is the 0th space of the associated Ω -spectrum of X, where $(-)_p^{\wedge}$ is the p-adic completion functor, and where Φ_p is a new functor from spaces to p-adically complete K_* -local spectra. Thus $\Phi_p \Omega^{\infty} X \simeq X$ when X is a p-adically complete K_* -local spectrum and Ω^{∞} therefore embeds the homotopy category of such spectra faithfully into the ordinary pointed homotopy of spaces.

In [7], Adams and Priddy showed by specific calculations that BSO_p^{\wedge} and BSU_p^{\wedge} have unique infinite deloopings, i.e., that there are unique homotopy types of connective spectra X and Y such that $\Omega^{\infty}X \approx BSO_p^{\wedge}$ and $\Omega^{\infty}Y \approx BSU_p^{\wedge}$. Using Φ_p we show that this uniqueness phenomenon occurs much more generally: for instance, if E is the (n - 1)-connected section of a p-adically complete K_* -local spectrum, then the space $\Omega^{\infty}E$ has a unique infinite delooping when $n \geq 3$ or when n = 2 and $\pi_2 E$ is torsion. We obtain unique infinite deloopability results for p-adic completions of various infinite classical groups, their classifying spaces, their homogeneous spaces, and their J-spaces. We likewise generalize the p-local version of the Adams-Priddy theorem by proving unique infinite deloopability for localizations of these spaces at arbitrary finite sets of primes. We also generalize results of Madsen-Snaith-Tornehave [19] on