IRREDUCIBILITY OF UNITARY PRINCIPAL SERIES FOR COVERING GROUPS OF SL(2, k)

COURTNEY MOEN

This paper establishes the irreducibility of certain unitary principal series representations of covering groups of SL(2, k), where k is a p-adic field, with p odd.

0.1. The theory of automorphic forms on covering groups of reductive groups over number fields has been shown to have important arithmetical applications [5], [3]. It is thus natural to study the representation theory of covering groups over *p*-adic fields. The representationtheoretic results which seem to be most applicable to automorphic forms are those concerning the reducibility of non-unitary principal series. The main results concern GL(n) and have been established by Kazhdan and Patterson [3]. In this paper we undertake the study of the unitary principal series by establishing complete reducibility results for *n*-sheeted covering groups of SL(2, k), where k is a *p*-adic field containing the *n*th roots of unity. For ease of exposition, we assume p is odd. The proof uses a detailed analysis in the Fourier transform realization. This procedure is well known, but carrying out the details in the general case is rather involved. In particular, a careful study of matrix-valued Bessel functions is necessary.

The main result of the paper states that when n is even, all unitary principal series are irreducible, and that when n is odd, the only reducible ones are those induced from non-trivial characters of order 2 of k^x . The reducibility results in the case of n odd follow from [6]; the proofs here deal with the irreducibility. These results can easily be applied to establish the reducibility of certain unitary principal series of covering groups of p-adic Chevalley groups. A more complete study, however, requires a completeness theorem like that proved by Harish-Chandra for reductive p-adic groups.

1.1. Let k be a p-adic field. Let n be a positive integer and assume k contains the nth roots of unity. Let (,) be the norm residue symbol of degree n. Let G = SL(2, k). There is a covering group \tilde{G} defined as