FINITE DIMENSIONAL REPRESENTATION OF CLASSICAL CROSSED-PRODUCT ALGEBRAS

IGAL MEGORY-COHEN

The paper describes the structure of finite dimensional representations of B_T , the crossed-product algebra of a classical dynamical system $(\alpha_T, \mathbb{Z}, C(X))$ where T is a homeomorphism on a compact space X. The results are used to describe the topology of $\operatorname{Prim}_n(B_T)$ and to partially classify the hyperbolic crossed-product algebras over the torus. One of the main results is that the number of orbits of any fixed length with respect to T is an invariant of B_T . A consequence of that is that the entropy of T is an invariant of B_T , for T a hyperbolic automorphism on the m-torus.

Introduction. The purpose of this paper is to study finite dimensional representations of classical crossed-product algebras. The results are used to describe the primitive ideal space of these algebras and partially classify them. The first two sections deal primarily with finite dimensional representations of B_T , the crossed-product algebra B_T of a classical dynamical system of the form $(\alpha_T, \mathbb{Z}, C(X))$ where T is a homeomorphism on a compact space X. In $\S1$ we study the general form of an irreducible *n*-dimensional representation of B_T . We show how to adjoin an orbit of length n to each such representation. The idea of adjoining an orbit to each finite dimensional representation is then further explored in $\S2$. We show that the number of connected components in $Prim_n(B_T)$ is equal to the number of orbits of length *n* with respect to T. A consequence of this result is that the entropy of T, for T a hyperbolic automorphism on T^m , is an invariant of B_T . In §3 we investigate the classification of the B_T 's corresponding to automorphisms on the 2-torus.

Preliminaries. For any integer *n* we define $E_n: B_T \to C(X)$ to be the (continuous) transformation that takes *C* in B_T to its *n*th "Fourier" coefficient f_n , see [1] for details. Symbolically, we write each *C* in B_T as $\sum f_n U^n$ where $f_n = E_n(C)$. Let $(\hat{\alpha}, T, B_T)$ be the *C**-dynamical system defined by the dual action $\hat{\alpha}_{\lambda}(C) = \sum \lambda^n U^n$, [2]. It is known that the Fejer sums of the function $\lambda \to \hat{\alpha}_{\lambda}(C)$ converge uniformly to