FINITE DIMENSIONAL REPRESENTATION OF CLASSICAL CROSSED-PRODUCT ALGEBRAS

Igal Megory-Cohen

Abstract

The paper describes the structure of finite dimensional representations of B_{T}, the crossed-product algebra of a classical dynamical system $\left(\alpha_{T}, \mathbb{Z}, C(X)\right)$ where T is a homeomorphism on a compact space X. The results are used to describe the topology of $\operatorname{Prim}_{n}\left(B_{T}\right)$ and to partially classify the hyperbolic crossed-product algebras over the torus. One of the main results is that the number of orbits of any fixed length with respect to T is an invariant of B_{T}. A consequence of that is that the entropy of T is an invariant of B_{T}, for T a hyperbolic automorphism on the m-torus.

Introduction. The purpose of this paper is to study finite dimensional representations of classical crossed-product algebras. The results are used to describe the primitive ideal space of these algebras and partially classify them. The first two sections deal primarily with finite dimensional representations of B_{T}, the crossed-product algebra B_{T} of a classical dynamical system of the form ($\alpha_{T}, \mathbb{Z}, C(X)$) where T is a homeomorphism on a compact space X. In $\S 1$ we study the general form of an irreducible n-dimensional representation of B_{T}. We show how to adjoin an orbit of length n to each such representation. The idea of adjoining an orbit to each finite dimensional representation is then further explored in $\S 2$. We show that the number of connected components in $\operatorname{Prim}_{n}\left(B_{T}\right)$ is equal to the number of orbits of length n with respect to T. A consequence of this result is that the entropy of T, for T a hyperbolic automorphism on \mathbf{T}^{m}, is an invariant of B_{T}. In $\S 3$ we investigate the classification of the B_{T} 's corresponding to automorphisms on the 2 -torus.

Preliminaries. For any integer n we define $E_{n}: B_{T} \rightarrow C(X)$ to be the (continuous) transformation that takes C in B_{T} to its nth "Fourier" coefficient f_{n}, see [1] for details. Symbolically, we write each C in B_{T} as $\sum f_{n} U^{n}$ where $f_{n}=E_{n}(C)$. Let $\left(\hat{\alpha}, \mathbf{T}, B_{T}\right)$ be the C^{*}-dynamical system defined by the dual action $\hat{\alpha}_{\lambda}(C)=\sum \lambda^{n} U^{n}$, [2]. It is known that the Fejer sums of the function $\lambda \rightarrow \hat{\alpha}_{\lambda}(C)$ converge uniformly to

