THE ISOMORPHISM PROBLEM FOR ORTHODOX SEMIGROUPS

T. E. HALL

The author's structure theorem for orthodox semigroups produced an orthodox semigroup $\mathcal{H}(E, T, \psi)$ from a band E, an inverse semigroup T and a morphism ψ between two inverse semigroups, namely T and W_E/γ , an inverse semigroup constructed from E. Here, we solve the isomorphism problem: when are two such orthodox semigroups isomorphic? This leads to a way of producing all orthodox semigroups, up to isomorphism, with prescribed band E and maximum inverse semigroup morphic image T.

1. Preliminaries. A semigroup S is called *regular* (in the sense of von Neumann for rings) if for each $a \in S$ there exists $x \in S$ such that axa = a; and S is called an *inverse semigroup* if for each $a \in S$ there is a unique $x \in S$ such that axa = a and xax = x. A band is a semigroup in which each element is idempotent, and an *orthodox* semigroup is a regular semigroup in which the idempotents form a subsemigroup (that is, a band).

We follow the notation and conventions of Howie [4].

Result 1 [3, Theorem 5]. The maximum congruence contained in Green's relation \mathcal{H} on any regular semigroup S, $\mu = \mu(S)$ say, is given by $\mu = \{(a, b) \in \mathcal{H}: \text{ for some [for each pair of] } \mathcal{H}\text{-related inverses } a' \text{ of } a \text{ and } b' \text{ of } b, a'ea = b'eb \text{ for each idempotent } e \leq aa' \}.$

A regular semigroup S is called *fundamental* if μ is the identity relation on S. For each band E, the semigroup W_E is fundamental, orthodox, has its band isomorphic to E, and contains, for each orthodox semigroup S with band E, a copy of S/μ as a subsemigroup: see the author [1] (or [3] with $E = \langle E \rangle$ and $W_E = T_{\langle E \rangle}$) or Howie [4, \S VI.2].

Now take any inverse semigroup T, and, if such exist, any idempotent-separating morphism $\psi: T \to W_E/\gamma$ whose range contains the semilattice of all idempotents of W_E/γ , where γ denotes the least inverse semigroup congruence on W_E . A semigroup $\mathscr{H}(E, T, \psi)$ (see