THE C^{*}-ALGEBRAS ASSOCIATED WITH MINIMAL HOMEOMORPHISMS OF THE CANTOR SET

Ian F. Putnam

Abstract

We investigate the structure of the C^{*}-algebras associated with minimal homeomorphisms of the Cantor set via the crossed product construction. These C^{*}-algebras exhibit many of the same properties as approximately finite dimensional (or AF) C^{*}-algebras. Specifically, each non-empty closed subset of the Cantor set is shown to give rise, in a natural way, to an AF-subalgebra of the crossed product and we analyze these subalgebras. Results of Versik show that the crossed product may be embedded into an AF-algebra. We show that this embedding induces an order isomorphism at the level of $K_{0}{ }^{-}$ groups. We examine examples arising from the theory of interval exchange transformations.

1. Preliminaries. We begin with an introduction to some terminology and notation, and a description of the results.

Throughout, we will let X denote the Cantor set. That is, X is a totally disconnected compact metrizable space with no isolated points. Generally, for any compact Hausdorff space, Z, we let $C(Z)$ denote the C^{*}-algebra of continuous complex-valued functions on Z.

We say a subset E of X is clopen if it is both open and closed. We let χ_{E} denote the characteristic function of E, which will be continuous if E is clopen. A partition, \mathscr{P}, of X we define to be a finite collection of pairwise disjoint clopen sets whose union is all of X. If \mathscr{P} is a partition of X, we let $\mathscr{C}(\mathscr{P})=\operatorname{span}\left\{\chi_{E} \mid E \in \mathscr{P}\right\} . \mathscr{C}(\mathscr{P})$ may be viewed as those functions in $C(X)$ which are constant on each element of \mathscr{P}. The fact that X is totally disconnected implies that any function in $C(X)$ may be approximated by one in some $\mathscr{C}(\mathscr{P})$. Given two partitions \mathscr{P}_{1} and \mathscr{P}_{2}, of X, we say \mathscr{P}_{2} is finer than \mathscr{P}_{1} and write $\mathscr{P}_{2} \geq \mathscr{P}_{1}$, if each element of \mathscr{P}_{2} is contained in a single element of \mathscr{D}_{1}. This is clearly equivalent to the condition that $\mathscr{C}\left(\mathscr{P}_{1}\right) \subset \mathscr{C}\left(\mathscr{P}_{2}\right)$. Given two partitions \mathscr{P}_{1} and \mathscr{P}_{2}, we define the partition $\mathscr{P}_{1} \vee \mathscr{P}_{2}$ to be $\left\{E \cap F \mid E \in \mathscr{P}_{1}, F \in \mathscr{P}_{2}\right\}$.

We let φ be a homeomorphism of X which we shall always assume to be minimal. That is, there are no closed φ-invariant sets except for the empty set and X itself. This is equivalent to the condition that, for any point x in X, the set $\left\{\varphi^{n}(x) \mid n \geq 0\right\}$ is dense in X. We shall refer to

