THE C*-ALGEBRAS ASSOCIATED WITH MINIMAL HOMEOMORPHISMS OF THE CANTOR SET

IAN F. PUTNAM

We investigate the structure of the C^* -algebras associated with minimal homeomorphisms of the Cantor set via the crossed product construction. These C^* -algebras exhibit many of the same properties as approximately finite dimensional (or AF) C^* -algebras. Specifically, each non-empty closed subset of the Cantor set is shown to give rise, in a natural way, to an AF-subalgebra of the crossed product and we analyze these subalgebras. Results of Versik show that the crossed product may be embedded into an AF-algebra. We show that this embedding induces an order isomorphism at the level of K_0 -groups. We examine examples arising from the theory of interval exchange transformations.

1. Preliminaries. We begin with an introduction to some terminology and notation, and a description of the results.

Throughout, we will let X denote the Cantor set. That is, X is a totally disconnected compact metrizable space with no isolated points. Generally, for any compact Hausdorff space, Z, we let C(Z) denote the C^* -algebra of continuous complex-valued functions on Z.

We say a subset E of X is clopen if it is both open and closed. We let χ_E denote the characteristic function of E, which will be continuous if E is clopen. A partition, \mathscr{P} , of X we define to be a finite collection of pairwise disjoint clopen sets whose union is all of X. If \mathscr{P} is a partition of X, we let $\mathscr{C}(\mathscr{P}) = \operatorname{span}\{\chi_E|E\in\mathscr{P}\}$. $\mathscr{C}(\mathscr{P})$ may be viewed as those functions in C(X) which are constant on each element of \mathscr{P} . The fact that X is totally disconnected implies that any function in C(X) may be approximated by one in some $\mathscr{C}(\mathscr{P})$. Given two partitions \mathscr{P}_1 and \mathscr{P}_2 , of X, we say \mathscr{P}_2 is finer than \mathscr{P}_1 and write $\mathscr{P}_2 \geq \mathscr{P}_1$, if each element of \mathscr{P}_2 is contained in a single element of \mathscr{P}_1 . This is clearly equivalent to the condition that $\mathscr{C}(\mathscr{P}_1) \subset \mathscr{C}(\mathscr{P}_2)$. Given two partitions \mathscr{P}_1 and \mathscr{P}_2 , we define the partition $\mathscr{P}_1 \vee \mathscr{P}_2$ to be $\{E \cap F | E \in \mathscr{P}_1, F \in \mathscr{P}_2\}$.

We let φ be a homeomorphism of X which we shall always assume to be minimal. That is, there are no closed φ -invariant sets except for the empty set and X itself. This is equivalent to the condition that, for any point x in X, the set $\{\varphi^n(x)|n \geq 0\}$ is dense in X. We shall refer to