MIXING AUTOMORPHISMS OF COMPACT GROUPS AND A THEOREM BY KURT MAHLER

Klaus Schmidt
Dedicated to the memory of Henry Abel Dye

Abstract

We investigate the higher order mixing properties of \mathbb{Z}^{d}-actions by automorphisms of a compact, abelian group and exhibit a connection between certain mixing conditions and a result by Kurt Mahler.

1. Introduction. Let X be a compact, abelian group, and let $\operatorname{Aut}(X)$ denote the group of continuous automorphisms of X. We investigate the mixing behaviour of \mathbb{Z}^{d}-actions $\alpha: \mathbf{n} \rightarrow \alpha_{\mathbf{n}}$ on X with the property that $\alpha_{\mathbf{n}} \in \operatorname{Aut}(X)$ for every $\mathbf{n} \in \mathbb{Z}^{d}$ (such an action will be called a \mathbb{Z}^{d}-action by automorphisms). If (X, α) satisfies the descending chain condition, i.e. if every decreasing sequence of closed, α-invariant subgroups of X eventually becomes constant, then α is algebraically and topologically conjugate to the shift action on a closed, shift invariant subgroup of $\left(\mathbb{T}^{k}\right)^{\mathbb{Z}^{d}}$, where $\mathbb{T}=\mathbb{R} / \mathbb{Z}$, and is automatically a Markov shift in d dimensions (cf. [KS] for a more general result). Furthermore it is easy to see that the dual group \hat{X} of X can naturally be viewed as a finitely generated R_{d}-module, where R_{d} is the ring of Laurent polynomials in d variables with integral coefficients (cf. [KS]). In view of this correspondence between finitely generated R_{d}-modules and \mathbb{Z}^{d} actions by automorphisms of compact, abelian groups the question arises how the algebraic properties of the R_{d}-module $M=\hat{X}$ reflect the dynamical properties of the \mathbb{Z}^{d}-action α. In [S2] it was shown how to read off ergodicity, mixing, expansiveness, and certain facts about periodic orbits, from properties of the prime ideals associated with the R_{d}-module M. In this paper we continue this investigation and study the higher order mixing behaviour of such actions. This problem was raised by a paper of F. Ledrappier which contains examples of such actions which are (strongly) mixing, but which fail to be r-mixing for some $r \geq 2$. In these examples higher order mixing breaks down in a particularly interesting way: there exist a nonempty set $S \subset \mathbb{Z}^{d}$ and Borel sets $\left\{B_{\mathbf{n}} \subset X: \mathbf{n} \in S\right\}$ with positive Haar measure such that the sets $\left\{\alpha_{k \mathbf{n}}\left(B_{\mathbf{n}}\right): \mathbf{n} \in S\right\}$ fail to become asymptotically independent as $k \rightarrow \infty$. In order to simplify terminology we call the set S a mixing
