THE INJECTIVE FACTORS OF TYPE III_{λ}, 0 < λ < 1

UFFE HAAGERUP

Dedicated to the memory of Henry A. Dye

We give a new proof for Connes' result that an injective factor of type III_{λ}, $0 < \lambda < 1$ on a separable Hilbert space is isomorphic to the Powers factor R_{λ} . Our approach is based on lengthy, but relatively simple operations with completely positive maps together with a technical result that gives a necessary condition for that two *n*-tuples (ξ_1, \ldots, ξ_n) and (η_1, \ldots, η_n) of unit vectors in a Hilbert W^* -bimodule are almost unitary equivalent. As a step in the proof we obtain the following strong version of Dixmier's approximation theorem for III_{λ}-factors: Let N be a factor of type III_{λ}, $0 < \lambda < 1$, and let φ be a normal faithful state on N for which $\sigma_{t_0}^{\varphi} = \operatorname{id}(t_0 = -2\pi/\log \lambda)$; then for every $x \in N$ the norm closure of $\operatorname{conv}\{uxu^* | u \in U(M_{\varphi})\}$ contains a scalar operator.

1. Introduction and preliminaries. In [6, §7] Connes proved that, for each $\lambda \in [0, 1[$, there is up to isomorphism only one injective factor of type III_{λ} (with separable predual), namely the Powers factor,

$$R_{\lambda} = \bigotimes_{n=1}^{\infty} (M_2, \varphi_{\lambda}).$$

Here M_2 is the algebra of complex 2×2 -matrices and φ_{λ} is the state on M_2 given by

$$\varphi_{\lambda}\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = \frac{1}{1+\lambda} (\lambda \varphi(x_{11}) + \varphi(x_{22})).$$

(The notion R_{λ} was introduced by Araki and Woods in [1]. In Powers' original work [19], R_{λ} denoted M_{α} , where $\alpha = \lambda/(1 + \lambda)$.)

Connes' approach for proving uniqueness of the injective factor of type III_{λ} ($\lambda \in]0, 1[$ fixed) is the following: By [4, §4] every factor N of type III_{λ} has an essentially unique crossed product decomposition

$$N = P \times_{\theta} Z$$

where P is a II_{∞} -factor and θ is an isomorphism of P for which $\tau \circ \theta = \lambda \tau$, where τ is a normal faithful semifinite trace on P. Moreover, N is