SPACES OF WHITNEY MAPS

Alejandro Illanes

Let X be a continuum. Let 2^{X} (respectively, C(X)) be the hyperspace of nonempty closed subsets (respectively, subcontinua) of X, endowed with the Hausdorff metric. For $\mathscr{H} = C(X)$ or 2^{X} , let $W(\mathscr{H})$ denote the space of Whitney maps for \mathscr{H} with the "sup metric" and pointwise product. In this paper we prove that if there exists a homeomorphism $\phi: W(C(X)) \to W(C(Y))$ (or $\phi: W(2^{X}) \to W(2^{Y})$) which preserved products and "strict order", then X is homeomorphic to Y. We also prove that there exists an embedding $\psi: W(C(X)) \to W(2^{X})$ such that $\psi(u)$ is an extension of u for each $u \in W(C(X))$.

Introduction. A continuum is a nondegenerate compact, connected metric space. All the spaces considered here are continua. If X is a continuum, 2^X (respectively, C(X)) is the hyperspace of nonempty closed subsets (respectively, subcontinua) of X, endowed with the Hausdorff metric H. Let \mathscr{H} be a nonempty closed subset of 2^X . A Whitney map for \mathscr{H} is a continuous function $u: \mathscr{H} \to [0, 1]$ such that (a) u(A) = 0 if and only if A is a single point set; (b) u(A) = 1 if and only if A = X; and (c) if $A, B \in \mathscr{H}$ and $A \subset B \neq A$, then u(A) < u(B). Let $W(\mathscr{H})$ denote the space of Whitney maps for \mathscr{H} . We identify X with $\{\{x\}: x \in X\} \subset C(X), 2^X$. Given $u, w \in W(\mathscr{H})$, we say that u is strictly smaller than w ($u \triangleleft w$) if u(A) < w(A) for each $A \in \mathscr{H} - (X \cup \{X\})$ and u is smaller or equal than w ($u \leq w$) if $u(A) \leq w(A)$ for each $A \in \mathscr{H}$. We consider $W(\mathscr{H})$ with the "sup metric", the pointwise product and the orders defined above.

In this paper we prove that: (a) $W(\mathscr{H})$ is a topologically complete space. This answers a question asked by S. B. Nadler, Jr. [2, question 14.71.4]; (b) There is a natural way to embed 2^X in W(C(X)) and in $W(2^X)$; (c) If $\mathscr{H} = C(X)$ and $\mathscr{G} = C(Y)$ or $\mathscr{H} = 2^X$ and $\mathscr{G} = 2^Y$ and there exists a homeomorphism $\phi: W(\mathscr{H}) \to W(\mathscr{G})$ which is a semigroup isomorphism and preserves strict order (in the sense that $u \triangleleft w$ if and only if $\phi(u) \triangleleft \phi(w)$), then X is homeomorphic to Y (this answers, partially, question 14.71.1 formulated by S. B. Nadler, Jr. in [2]). In [3], L. E. Ward, Jr., showed that Whitney maps for \mathscr{H} can be extended to Whitney maps for 2^X . Using his constructions, we