FANO BUNDLES OVER P^{3} AND Q_{3}

Michai Szurek and Jaroslaw A. Wiśniewski

Abstract

A vector bundle \mathscr{E} is called Fano if its projectivization $P(\mathscr{E})$ is a Fano manifold. In this article we prove that Fano bundles exist only on Fano manifolds and discuss rank-2 Fano bundles over the projective space P^{3} and a 3-dimensional smooth quadric Q_{3}.

Fano bundles appear naturally as we strive to construct examples of Fano manifolds of dimension ≥ 3; they form interesting yet accessible class of Fano n-folds. For example: among 87 types of Fano 3 -folds with $b_{2} \geq 2$ listed in [13] 22 types are ruled (i.e. obtained by projectivization of Fano bundles). Moreover some of the non-ruled manifolds listed there can be easily expressed as either finite covers of ruled 3 -folds or divisors (or, more generally, complete intersections) in ruled Fano manifolds of higher dimension.

Let us mention another aspect of dealing with Fano bundles: it is how to determine whether or not a vector bundle is ample. This very fine property of a vector bundle cannot be determined by its numerical invariants, see [7]. Assuming the bundle to be stable helps to establish a sufficient condition for ampleness: [10], [17], which however is far from being necessary. In the present paper we take advantage of some already known facts about stable bundles with small Chern classes and determine that a bundle \mathscr{E} is not ample by finding its jumping lines or sections of $\mathscr{E}(-k)$.

Let us note that some results of this paper have already been published, see remarks after the proofs of Theorems (1.6) and (2.1).

1. Fano bundles; preliminaries. Let \mathscr{E} be a vector bundle of rank $r \geq 2$ on a smooth complex projective variety M. Let us recall that the tautological line bundle $\xi=\xi_{\varepsilon}$ on $V=P(\mathscr{E})$ is uniquely determined by the conditions $\xi_{\mathcal{\ell}} \mid F \approx \mathscr{O}_{F}(1)$ and $p_{*} \xi_{\mathscr{\ell}}=\mathscr{E}$. By p we have denoted the projection morphism of $V=P(\mathscr{E})$ onto M and by F-the fibre of p. Obviously, $F \cong P^{r-1}$ and $p: V \rightarrow M$ is a P^{r-1}-bundle. The Picard group of V can be expressed as a direct sum: Pic $V \cong Z \cdot \xi_{\mathscr{E}} \oplus p^{*}(\operatorname{Pic} M)$. Replacing \mathscr{E} by its twist with a line bundle \mathscr{L} on M does not affect
