DEGREES AND FORMAL DEGREES
FOR DIVISION ALGEBRAS AND GL $_{n}$ OVER A p-ADIC FIELD
Lawrence Corwin, Allen Moy and Paul J. Sally, Jr.

Abstract

We compute in the tame case, the degrees of the irreducible representations of a division algebra and the formal degrees of the discrete series of $\mathrm{GL}(n)$ over a p-adic field and compare them.

1. Introduction. Let F be a p-adic field of characteristic zero, and let $G=\mathrm{GL}_{n}(F)$. Throughout this paper, we assume that $(n, p)=1$ (the tame case). The discrete series of G consists of (equivalence classes of) irreducible, unitary representations of G whose matrix coefficients are square integrable $(\bmod Z)$, where Z is the center of G. The discrete series splits into two distinct classes ([HC2], [J]):
(1) Supercuspidal representations: irreducible unitary representations whose matrix coefficients are compactly supported $(\bmod Z)$;
(2) Generalized special representations: irreducible unitary representations whose matrix coefficients are square integrable $(\bmod Z)$, and which are subrepresentations of representations induced from a proper parabolic subgroup of G.

The supercuspidal representations of G were constructed by Howe [H2]. The first proof of the fact that all supercuspidal representations of G are contained in Howe's construction was given by Moy [M]. The generalized special representations of G were characterized by Bernstein-Zelevinsky ([BZ], [Z]). We note that the BernsteinZelevinsky construction uses the supercuspidal representations of $\mathrm{GL}_{m}(F)$ where $m \mid n(m<n)$. Since $(m, p)=1$ in the present case, the requisite supercuspidal representations can be obtained from Howe's construction.

The key to the study of the supercuspidal representations of G is the notion, due to Howe [H2], of an admissible character of an extension of degree n over F. In fact, the supercuspidal representations of G are parametrized by (conjugacy classes of) admissible characters of extensions of degree n over F, and generalized special representations are parametrized by (conjugacy classes of) admissible characters of

