THE BOUNDARY BEHAVIOUR OF HARMONIC UNIVALENT MAPS

YUSUF ABU-MUHANNA AND ABDALLAH LYZZAIK

Let D denote the open unit disc in the complex plane and $f = h + \overline{g}$ a complex-valued, harmonic, univalent and orientation preserving map in D, where h and g are analytic in D. We show that $g, h \in H^{\lambda}$ and $f \in h^{\lambda}$ for some $\lambda > 0$, where H^{λ} (h^{λ}) is the Hardy space of order λ for analytic (harmonic) functions. We also study the correspondence under f between ∂D (boundary of D) and the prime ends of f(D).

1. Introduction. Let D denote the open unit disk and S_H denote the class of all complex valued, harmonic, orientation-preserving, univalent functions f in D normalized by

(1)
$$f(0) = 0$$
 and $f_z(0) = 1$.

Each $f \in S_H$ can be expressed as

$$f = h + \overline{g}$$

where $h = z + \sum_{n=2}^{\infty} a_n z^n$ and $g = \sum_{n=1}^{\infty} b_n z^n$ are analytic in *D*. Clunie and Sheil-Small, [3], studied S_H together with some geometric subclasses of S_H . They proved, among other results, that S_H is normal with respect to the topology of uniform convergence on compact subsets of *D*. In this paper, we study the aspect of boundary behaviour of functions in S_H . We point out that, although some of our results are stated for $f \in S_H$, conditions (1) are not needed.

It is known that, when $f \in S_H$ is also analytic, the length of the image of the radius $[0, e^{i\theta}]$, $\int_0^1 |f'(re^{i\theta})| dr$, is finite for all θ except for a set of logarithmic capacity zero [8, p. 341]. It is also known that $f \in H^{\lambda}$, $0 < \lambda < \frac{1}{2}$, where H^{λ} is the Hardy space of analytic functions of order λ [8, p. 127], [5, p. 61]. In §2, we prove that the length of the image of the radius $[0, e^{i\theta}]$ under $f \in S_H$, $\int_0^1 |\frac{\partial f}{\partial r}(re^{i\theta})|$, is finite for almost all θ . We also prove that $h, g \in H^{\lambda}$ and $f \in h^{\lambda}$ for some λ small, where h^{λ} is the Hardy space of harmonic functions of order λ [4, p. 2]. Furthermore, as a corollary, we conclude that the radial limits $\hat{h}(e^{i\theta}) = \lim_{r \to 1^-} h(re^{i\theta})$, $\hat{g}(e^{i\theta}) = \lim_{r \to 1^-} g(re^{i\theta})$ and $\hat{f}(e^{i\theta}) = \lim_{r \to 1^-} f(re^{i\theta})$ exist for almost all θ [4, pp. 15–17].