NOTE ON THE INEQUALITY OF THE ARITHMETIC AND GEOMETRIC MEANS

Hao Zhi Chuan

We show how to insert a continuum of additional terms (defined by an integral and depending on an arbitrary positive parameter) between the two sides of the generalized arithmetic-geometric mean inequality with weights. Applications give an inequality involving positive definite matrices and also a refinement of the inequality connecting the inscribed and circumscribed radii of a triangle.

We suppose throughout that
(1) $n \in \mathbb{N}$ and $a_{j}>0, \quad q_{j}>0(j=1, \ldots, n), \quad q_{1}+\cdots+q_{n}=1$.

Then we have the well-known inequality of the means (e.g. [2, \#9])

$$
\begin{equation*}
\prod_{j=1}^{n} a_{j}^{q_{j}} \leq \sum_{j=1}^{n} q_{j} a_{j}, \tag{2}
\end{equation*}
$$

with equality if and only if $a_{j}=a_{1}(j=1, \ldots, n)$.
Theorem 1. If (1) holds and if $p>0$, then

$$
\begin{equation*}
\prod_{j=1}^{n} a_{j}^{q_{j}} \leq\left\{p \int_{0}^{\infty}\left[\prod_{j=1}^{n}\left(x+a_{j}\right)^{q_{j}}\right]^{-p-1} d x\right\}^{-1 / p} \leq \sum_{j=1}^{n} q_{j} a_{j} \tag{3}
\end{equation*}
$$

Proof. For $x \geq 0$, we replace a_{j} by $x+a_{j}$ in (2); then

$$
0<\prod_{j=1}^{n}\left(x+a_{j}\right)^{q_{j}} \leq \sum_{j=1}^{n} q_{j}\left(x+a_{j}\right)=x+\sum_{j=1}^{n} q_{j} a_{j} .
$$

Hence (for $p>0$)

$$
\begin{align*}
& \int_{0}^{\infty}\left[\prod_{j=1}^{n}\left(x+a_{j}\right)^{q_{j}}\right]^{-p-1} d x \tag{4}\\
& \quad \geq \int_{0}^{\infty}\left[x+\sum_{j=1}^{n} q_{j} a_{j}\right]^{-p-1} d x=\frac{1}{p}\left(\sum_{j=1}^{n} q_{j} a_{j}\right)^{-p}
\end{align*}
$$

