ON THE DISTRIBUTION OF WEIERSTRASS POINTS ON IRREDUCIBLE RATIONAL NODAL CURVES

JOHN B. LITTLE AND KATHRYN A. FURIO

Let X be an irreducible rational nodal curve of arithmetic genus $g \ge 2$, and let \mathscr{L} be a non-special, effective invertible sheaf on X. Let $W(\mathscr{L})$ denote the set of smooth Weierstrass points of \mathscr{L} and all its positive tensor powers on X. In this paper, we study the distribution of $W(\mathscr{L})$ on X. In particular, we will show that $W(\mathscr{L})$ is not dense on X, generalizing an example of R. F. Lax.

1. Introduction. In a recent series of papers ([2], [3], [4]), R. F. Lax and C. Widland have defined Weierstrass points for invertible sheaves on integral, projective Gorenstein curves over C. They use a method generalizing the classical definition of the Weierstrass points of the canonical sheaf on a smooth curve via Wronskians. In particular, they show that if X is an integral, projective Gorenstein curve, and \mathcal{L} is an invertible sheaf on X, then a smooth point $P \in X$ is a Weierstrass point of \mathcal{L} if and only if

$$\dim H^0(X, \mathscr{L}(-sP)) > 0,$$

where $s = \dim H^0(X, \mathcal{L})$. On the other hand, if $s \ge 2$, the singular points of X are automatically Weierstrass points of \mathcal{L} of high Weierstrass weight. (See Propositions 2 and 3 of [3].)

The goal of the present note is to prove a general result about the distribution of the smooth Weierstrass points of an invertible sheaf \mathcal{L} and all its positive tensor powers in the case that X is an irreducible rational nodal curve. This particular question was suggested by an example in [3], in which it is shown that for a particular \mathcal{L} on a particular rational nodal curve of arithmetic genus 2, the set

 $W(\mathscr{L}) = \{P \in X \mid X \text{ is a smooth Weierstrass point of } \mathscr{L}^{\otimes n}$

for some $n \ge 1$

avoids a small disk in the normalization of X (that is, \mathbb{P}^1). This situation is quite different from the case of smooth curves X, where B. Olsen ([6]) had previously shown that if deg(\mathscr{L}) > 0, then the analogous set $W(\mathscr{L})$ is dense in the complex topology on X.