ON SOME TOTALLY ERGODIC FUNCTIONS

Wojciech Chojnacki
Dedicated to Dagmara Klim and Nina Tomaszewska

Abstract

We study some classes of totally ergodic functions on locally compact Abelian groups. Among other things, we establish the following result: If R is a locally compact commutative ring, \mathscr{R} is the additive group of R, χ is a continuous character of \mathscr{R}, and p is the function from $\mathscr{R}^{n}(n \in \mathbb{N})$ into \mathscr{R} induced by a polynomial of n variables with coefficients in R, then the function $\chi \circ p$ either is a trigonometric polynomial on \mathscr{R}^{n} or all of its Fourier-Bohr coefficients with respect to any Banach mean on $L^{\infty}\left(\mathscr{R}^{n}\right)$ vanish.

1. Introduction. Let G be a locally compact Abelian group, λ_{G} be the Haar measure in G, and $L^{\infty}(G)$ be the space of all classes of complex-valued λ_{G}-measurable λ_{G}-essentially bounded functions on G endowed with the λ_{G}-essential supremum norm.

A linear continuous functional m on $L^{\infty}(G)$ is called a Banach mean on $L^{\infty}(G)$ if it satisfies the following conditions:
(i) $m(1)=1=\|m\|$,
(ii) $m\left(T_{a} f\right)=m(f)$ for each $a \in G$ and each $f \in L^{\infty}(G)$, where $T_{a} f(b)=f(a+b)$ for any $b \in G$.
When G is finite, there is precisely one Banach mean on $L^{\infty}(G)$. When G is infinite, then the set of all Banach means on $L^{\infty}(G)$ has at least the cardinality of the continuum (cf. [6, Propositions 22.26 and 22.41]).

Let \widehat{G} be the dual group of G. Given $f \in L^{\infty}(G), \chi \in \widehat{G}$, and a Banach mean m on $L^{\infty}(G)$, let $\mathscr{F}_{m} f(\chi)$ stand for the Fourier-Bohr coefficient of f at χ with respect to m, defined to be $m(f \bar{\chi})$.

A function f in $L^{\infty}(G)$ is said to be ergodic if its mean value $m(f)$ is independent of the choice of the Banach mean m on $L^{\infty}(G)$. A function f in $L^{\infty}(G)$ is said to be totally ergodic if, for every $\chi \in \widehat{G}$, the function $f \chi$ is ergodic (cf. [7, 8]). Let $E(G)$ be the space of all ergodic functions in $L^{\infty}(G), T E(G)$ be the space of all totally ergodic functions in $L^{\infty}(G)$, and $T E_{0}(G)$ be the subspace of $T E(G)$ consisting of those $f \in L^{\infty}(G)$ for which $\mathscr{F}_{m} f(\chi)=0$ for any $\chi \in \widehat{G}$ and any Banach mean m on $L^{\infty}(G)$. Let $P(G)$ be the space of all

