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ON SOME TOTALLY ERGODIC FUNCTIONS
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We study some classes of totally ergodic functions on locally com-
pact Abelian groups. Among other things, we establish the following
result: If R is a locally compact commutative ring, 3ί is the additive
group of R, χ is a continuous character of 3$ , and p is the function
from 3ln (n e N) into 3% induced by a polynomial of n variables
with coefficients in R, then the function χ o p either is a trigono-
metric polynomial on 3ίn or all of its Fourier-Bohr coefficients with
respect to any Banach mean on L°°{^n) vanish.

1. Introduction. Let G be a locally compact Abelian group, XQ be
the Haar measure in G, and L°°(G) be the space of all classes of
complex-valued ^-measurable ^-essentially bounded functions on
G endowed with the /^-essential supremum norm.

A linear continuous functional m on L°°(G) is called a Banach
mean on L°°(G) if it satisfies the following conditions:

(i) m(l) = l = \\m\\9

(ii) m(Taf) = m(f) for each a e G and each / e L°°(G), where
Tafφ) = f(a + b) for any b e G.

When G is finite, there is precisely one Banach mean on L°°{G).
When G is infinite, then the set of all Banach means on L°°{G) has
at least the cardinality of the continuum (cf. [6, Propositions 22.26
and 22.41]).

Let G be the dual group of G. Given / e L°°(G), / eG, and a
Banach mean m on L°°(G), let ^mf{x) stand for the Fourier-Bohr
coefficient of / at χ with respect to m, defined to be m(fχ).

A function / in L°°(G) is said to be ergodic if its mean value m(f)
is independent of the choice of the Banach mean m on L°°{G). A
function / in L°°(G) is said to be totally ergodic if, for every / e G,
the function fχ is ergodic (cf. [7, 8]). Let E{G) be the space of
all ergodic functions in L°°(G), TE(G) be the space of all totally
ergodic functions in L°°(G), and TEQ(G) be the subspace of TE(G)
consisting of those / e L°°(G) for which ^mfix) = 0 for any χ eG
and any Banach mean m on L°°(G). Let P(G) be the space of all


