NEVANLINNA PARAMETRIZATIONS FOR THE EXTENDED INTERPOLATION PROBLEM

SECHIKO TAKAHASHI

Let \mathscr{B} be the set of holomorphic functions f with $|f| \leq 1$ in the open unit disc $D = \{z \in \mathbb{C} \colon |z| < 1\}$. Let $\sigma = \{z_1, z_2, \ldots\}$ be a finite or infinite sequence of distinct points in D and, for each point $z_i \in \sigma$, $(c_{i0}, \ldots, c_{in_i-1})$ be an ordered n_i -tuple of complex numbers $(0 < n_i < +\infty)$. The problem is to find a function f which belongs to \mathscr{B} and satisfies the extended interpolation conditions

(E1)
$$f(z) = \sum_{\alpha=0}^{n_i-1} c_{i\alpha} (z-z_i)^{\alpha} + \mathbf{O}((z-z_i)^{n_i}) \qquad (\forall z_i \in \sigma).$$

Let ${\mathscr E}$ denote the set of all solutions of this problem (EI) in ${\mathscr B}$ and assume the hypothesis

$$\mathcal{E}$$
 has at least two elements.

A bijection $\pi\colon \mathscr{B}\to\mathscr{E}$ is called Nevanlinna parametrization of \mathscr{E} if there exist four functions $P,\ Q,\ R$, and S holomorphic in D and such that $Rg+S\not\equiv 0$, $\pi(g)=(Pg+Q)/(Rg+S)$ for any $g\in\mathscr{B}$. The existence, some properties and some applications of such parametrizations are shown. One has a bijection between the set of Nevanlinna parametrizations of \mathscr{E} and the group of Möbius transformations.

In our previous paper [24], $\sigma = \{z_1, \ldots, z_k\}$ being finite, we constructed in a simple manner an Hermitian $n \times n$ matrix A from the given data $\{z_i\}$ and $\{c_{i\alpha}\}$ $(1 \le i \le k, 0 \le \alpha \le n_i - 1)$, where $n = \sum_{i=1}^k n_i$, and established the following theorems which unify the coefficient theorem of Carathéodory-Toeplitz-Schur [3], [26], and [19] and the interpolation theorem of Pick [17]:

THEOREM E. The problem (EI) admits a solution in \mathcal{B} if and only if $A \geq 0$ (positive semidefinite). If so, among the solutions, there is a finite Blaschke product of degree $\leq n$.

THEOREM U. The solution of the problem (EI) in \mathscr{B} is unique if and only if $A \geq 0$ and $\det A = 0$. In this case, the unique solution is a finite Blaschke product whose degree is equal to the rank of A.