ON THE ELIMINATION OF ALGEBRAIC INEQUALITIES

Daniel Pecker

Abstract

Let S be a locally closed semi-algebraic subset of \mathbb{R}^{n}. We find an irreducible equation of an algebraic set of \mathbb{R}^{n+1} projecting upon S. Our methods are simple and explicit.

1. Introduction. The inequality $x \geq 0$ is often replaced by the proposition " x has a square root" or " $\exists t \in \mathbb{R}, t^{2}-x=0$ ". This is the most immediate example of an elimination of one inequality. The general problem is to find an algebraic set projecting upon a given semi-algebraic set: it is a converse of the problem of the elimination of quantifiers.

Motzkin proved that every semi-algebraic subset of \mathbb{R}^{n} is the projection of an algebraic set in \mathbb{R}^{n+1}. However this algebraic set is very complicated and generally reducible.

Andradas and Gamboa proved that any closed semi-algebraic subset of \mathbb{R}^{n} whose Zariski-closure is irreducible is the projection of an irreducible algebraic set in \mathbb{R}^{n+k}.

In this paper we shall first improve Motzkin's result by finding equations generally of minimal degree. Then we shall give a few results concerning irreducibility. One of the first examples of such a construction is due to Rohn and has been studied by Hilbert and Utkin:

If $4 C_{4} C_{2}=\varepsilon^{2}$ is a plane curve of degree six (where $\operatorname{deg}\left(C_{2}\right)=2$, $\left.\operatorname{deg}\left(C_{4}\right)=4, \varepsilon \in \mathbb{R}\right)$, then it is the apparent contour of the quartic surface $C_{2} z^{2}-\varepsilon z+C_{4}=0$.
2. The case of basic closed subsets. Let $\mathbb{R}^{+}=\{x \in \mathbb{R} \mid x \geq 0\}$ be the set of nonnegative numbers. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)$ be a "parameter" and t an "indeterminate", so that we can speak of the roots of a polynomial $P(\mathbf{x}, t)$. In the same way, unless otherwise specified, the degree of $P(\mathbf{x}, t)$ will be its degree in t.

Let us define the polynomials $a_{i}(\mathbf{x})$ as follows:

$$
a_{k}\left(x_{1}, \ldots, x_{k+1}\right)=x_{k+1}\left(x_{1}+x_{2}+\cdots+x_{k}\right) .
$$

It is easy to see that $a_{1}(\mathbf{x}) \geq 0, \ldots, a_{n}(\mathbf{x}) \geq 0$ if and only if all the x_{i} are nonnegative or all the x_{i} are nonpositive $(i=1, \ldots, n+1)$.

