A COMPARISON ALGEBRA ON A CYLINDER WITH SEMI-PERIODIC MULTIPLICATIONS

Abstract

Severino T. Melo

A necessary and sufficient Fredholm criterion is found for a C^{*} algebra of bounded operators on a cylinder, which contains operators of the form $L \Lambda^{M}$, where $\Lambda=(1-\Delta)^{-1 / 2}$ and L is an M th order differential operator whose coefficients are periodic at infinity.

0. Introduction. Let Ω denote the cylinder $\mathbb{R} \times \mathbb{B}$, where \mathbb{B} is a compact Riemannian manifold, Δ_{Ω} its Laplacian and \mathscr{H} the Hilbert space $L^{2}(\Omega)$. Cordes [3] found a necessary and sufficient Fredholm criterion for operators in the C^{*}-subalgebra of $\mathscr{L}(\mathscr{H})$ generated by: (i) multiplications by functions that extend continuously to $[-\infty,+\infty] \times \mathbb{B}$, (ii) $\Lambda=\left(1-\Delta_{\Omega}\right)^{-1 / 2}$ and (iii) operators of the form $D \Lambda$, where D is either $\partial / \partial t, t \in \mathbb{R}$, or a first order differential operator on \mathbb{B} with smooth coefficients. Here we extend this algebra by adjoining the multiplications by 2π-periodic continuous functions to the generators, and a similar Fredholm criterion is obtained.

The commutator ideal $\mathscr{C}_{\mathscr{P}}$ of the extended algebra $\mathscr{C}_{\mathscr{g}}$ is proven to be $*$-isomorphic to $\mathscr{S} \mathscr{L} \bar{\otimes} \mathscr{K}_{\mathbb{Z}} \bar{\otimes} \mathscr{K}_{\mathbb{B}}$, where $\mathscr{S L}$ denotes the algebra of singular integral operators on the circle and $\mathscr{K}_{\mathbb{Z}}$ and $\mathscr{K}_{\mathbb{B}}$ denote the algebras of compact operators on $L^{2}(\mathbb{Z})$ and $L^{2}(\mathbb{B})$, respectively. This allows us to define on $\mathscr{C}_{\mathscr{D}}$ an operator-valued symbol, the " γ symbol", such that $\operatorname{ker} \gamma \cap \operatorname{ker} \sigma$ equals the compact ideal of $\mathscr{L}(\mathscr{H})$. Here σ denotes the complex-valued symbol on $\mathscr{C}_{\mathscr{P}}$ that arises from the Gelfand map of the commutative C^{*}-algebra $\mathscr{C}_{\mathscr{P}} / \mathscr{C}_{\mathscr{P}}$. We prove that $A \in \mathscr{C}_{\mathscr{P}}$ is Fredholm if and only if γ_{A} and σ_{A} are invertible.

The simpler case when the compact manifold reduces to a point is considered in [5]. There, a unitary map W from $L^{2}(\mathbb{R})$ onto $L^{2}\left(S^{1}\right) \bar{\otimes} L^{2}(\mathbb{Z})$ is defined, such that the conjugate $W \mathscr{E} W^{-1}$ of the commutator ideal equals $\mathscr{S L} \bar{\otimes} \mathscr{K}_{\mathbb{Z}}$. Here, we conjugate $\mathscr{E}_{\mathscr{D}}$ with $W \otimes I_{\mathbb{B}}$, where $I_{\mathbb{B}}$ denotes the identity operator on $L^{2}(\mathbb{B})$, and obtain $\mathscr{S L} \bar{\otimes} \mathscr{K}_{\mathbb{Z}} \bar{\otimes} \mathscr{K}_{\mathrm{B}}$.

If L is a differential operator on Ω whose coefficients are continuous and approach periodic functions at infinity, the operator $A=$ $L \Lambda^{M}$ belongs to $\mathscr{C}_{\mathscr{D}}$, where M is the order of L. We can apply

