A COMPARISON ALGEBRA ON A CYLINDER WITH SEMI-PERIODIC MULTIPLICATIONS

Severino T. Melo

A necessary and sufficient Fredholm criterion is found for a C^* algebra of bounded operators on a cylinder, which contains operators of the form $L\Lambda^M$, where $\Lambda = (1 - \Delta)^{-1/2}$ and L is an Mth order differential operator whose coefficients are periodic at infinity.

0. Introduction. Let Ω denote the cylinder $\mathbb{R} \times \mathbb{B}$, where \mathbb{B} is a compact Riemannian manifold, Δ_{Ω} its Laplacian and \mathscr{H} the Hilbert space $L^2(\Omega)$. Cordes [3] found a necessary and sufficient Fredholm criterion for operators in the C*-subalgebra of $\mathscr{L}(\mathscr{H})$ generated by: (i) multiplications by functions that extend continuously to $[-\infty, +\infty] \times \mathbb{B}$, (ii) $\Lambda = (1 - \Delta_{\Omega})^{-1/2}$ and (iii) operators of the form $D\Lambda$, where D is either $\partial/\partial t$, $t \in \mathbb{R}$, or a first order differential operator on \mathbb{B} with smooth coefficients. Here we extend this algebra by adjoining the multiplications by 2π -periodic continuous functions to the generators, and a similar Fredholm criterion is obtained.

The commutator ideal $\mathscr{E}_{\mathscr{P}}$ of the extended algebra $\mathscr{E}_{\mathscr{P}}$ is proven to be *-isomorphic to $\mathscr{PL} \boxtimes \mathscr{K}_{\mathbb{Z}} \boxtimes \mathscr{K}_{\mathbb{B}}$, where \mathscr{PL} denotes the algebra of singular integral operators on the circle and $\mathscr{K}_{\mathbb{Z}}$ and $\mathscr{K}_{\mathbb{B}}$ denote the algebras of compact operators on $L^2(\mathbb{Z})$ and $L^2(\mathbb{B})$, respectively. This allows us to define on $\mathscr{E}_{\mathscr{P}}$ an operator-valued symbol, the " γ symbol", such that ker $\gamma \cap \ker \sigma$ equals the compact ideal of $\mathscr{L}(\mathscr{H})$. Here σ denotes the complex-valued symbol on $\mathscr{E}_{\mathscr{P}}$ that arises from the Gelfand map of the commutative C^* -algebra $\mathscr{E}_{\mathscr{P}}/\mathscr{E}_{\mathscr{P}}$. We prove that $A \in \mathscr{E}_{\mathscr{P}}$ is Fredholm if and only if γ_A and σ_A are invertible.

The simpler case when the compact manifold reduces to a point is considered in [5]. There, a unitary map W from $L^2(\mathbb{R})$ onto $L^2(S^1) \overline{\otimes} L^2(\mathbb{Z})$ is defined, such that the conjugate $W \mathcal{E} W^{-1}$ of the commutator ideal equals $\mathcal{SL} \overline{\otimes} \mathcal{K}_{\mathbb{Z}}$. Here, we conjugate $\mathcal{E}_{\mathcal{P}}$ with $W \otimes I_{\mathbb{B}}$, where $I_{\mathbb{B}}$ denotes the identity operator on $L^2(\mathbb{B})$, and obtain $\mathcal{SL} \overline{\otimes} \mathcal{K}_{\mathbb{Z}} \overline{\otimes} \mathcal{K}_{\mathbb{B}}$.

If L is a differential operator on Ω whose coefficients are continuous and approach periodic functions at infinity, the operator $A = L\Lambda^M$ belongs to $\mathscr{C}_{\mathscr{P}}$, where M is the order of L. We can apply