SYMPLECTIC-WHITTAKER MODELS FOR Gl_n

MICHAEL J. HEUMOS AND STEPHEN RALLIS

We consider the Klyachko models of admissible irreducible representations of the group $\operatorname{GL}_n(F)$ where F is a non-Archimedean local field of characteristic 0. These are models which generalize the usual Whittaker model by allowing the inducing subgroup a symplectic component. We prove the uniqueness of the symplectic models and the disjointness for unitary representations of the different models. Moreover, for $n \leq 4$ we prove that all unitary irreducible representations admit a Klyachko model.

Introduction. Let F be a non-Archimedean local field of characteristic zero. This paper studies the realization of irreducible, admissible representation of $Gl_n(F)$ in certain induced representations generalizing the Whittaker model. In contrast to generalizing by allowing degenerate Whittaker characters or smaller unipotent groups arising from some degenerate data (cf. [Mo-Wa]), we generalize the inducing subgroup by allowing a symplectic component.

Our investigation is motivated by results of A. A. Klyachko [KI], who exhibited a model, in the sense of I. M. Gel'fand, for Gl_n over a finite field. He found a set of representations (which we will refer to as models) which are disjoint, multiplicity free and exhaust the set of irreducible representations. The representations he considers form a family $\mathcal{M}_{n,k}$, $0 \le k \le [\frac{n}{2}]$. One extreme $\mathcal{M}_{n,0}$, is the Whittaker model, a representation induced off a character on the subgroup of unipotent, upper triangular matrices. When n is even, the other extreme $\mathcal{M}_{n,n/2}$ is induced off the trivial character of Sp_n , the symplectic group of $2n \times 2n$ matrices. The other "mixed" models $\mathcal{M}_{n,k}$, $0 < k < \frac{n}{2}$, are induced off characters of subgroups coming from smaller unipotent and symplectic groups. Since the Whittaker model for representations of p-adic Gl_n is of considerable importance, e.g. in the study of automorphic forms, it is natural to investigate the role of the other models in the p-adic case.

The natural category to study in the local field setting is the category of admissible representations. The Whittaker model $\mathcal{M}_{n,0}$ is the only model which has received attention. It was shown by I. M. Gel'fand and D. A. Kazhdan ([Ge-Ka,1]) that the Whittaker model is unique,