A NOTE ON THE STABILITY THEOREM OF J. L. BARBOSA AND M. DO CARMO FOR CLOSED SURFACES OF CONSTANT MEAN CURVATURE

HENRY C. WENTE

The theorem of Barbosa and do Carmo asserts that the only stable compact hypersurface of constant mean curvature in R^{n+1} is the round *n*-sphere. We present an elementary proof of this fact by considering the 2-parameter family $y = s(x + t\xi)$ where x is the constant mean curvature immersion and ξ is the unit normal vector field.

I. Introduction. Let M be a compact oriented *n*-manifold and $x: M \to R^{n+1}$ an immersion of M into R^{n+1} . For such an immersion we compute the *n*-area A(x)

(1)
$$A(x) = \int_M dS$$

where dS is the *n*-area element on M induced by the immersion x. We can also compute the "oriented" volume V(x) enclosed by the immersed surface x(M). It is given by the formula

(2)
$$V(x) = \frac{1}{n+1} \int_{M} (x \cdot \xi) \, dS$$

where ξ is the unit normal vector field determined by the orientation of M and the immersion x.

Let $x_t: (-\varepsilon, \varepsilon) \times M \to \mathbb{R}^{n+1}$ be a one-parameter family of immersions of M into \mathbb{R}^{n+1} with $x_0 = x$. A necessary and sufficient condition that the area functional $A(x_t)$ have a critical value at t = 0 for all variations x_t for which $V(x_t)$ is constant is that the immersed surface have constant mean curvature H. Furthermore, such an immersion is said to be stable if for all volume-preserving perturbations the second derivative of $A(x_t)$ at t = 0 is non-negative.

In a recent paper [1] J. L. Barbosa and M. do Carmo proved the following theorem.

THEOREM [1]. Let M be a compact oriented n-manifold and let $x: M \to R^{n+1}$ be an immersion with non-zero constant mean curvature