THE HOMOLOGY OF A FREE LOOP SPACE

STEPHEN HALPERIN AND MICHELINE VIGUÉ-POIRRIER

Denote by X^{S^1} the space of all continuous maps from the circle into a simply connected finite CW complex, X. THEOREM: Let k be a field and suppose that either char $k > \dim X$ or that X is kformal. Then the betti numbers $b_q = \dim H_q(X^{S^1}; k)$ are uniformly bounded above if and only if the k-algebra $H^*(X; k)$ is generated by a single cohomology class. COROLLARY: If, in addition, X is a smooth closed manifold and k is as in the theorem, and if $H^*(X; k)$ is not generated by a single class then X has infinitely many distinct closed geodesics in any Riemannian metric.

1. Introduction. In this paper (co)homology is always singular and $b_q(-; \Bbbk) = \dim H_q(-; \Bbbk)$ denotes the *qth betti number* with respect to a field \Bbbk . The *free loop space*, X^{S^1} , of a simply connected space, X, is the space of all continuous maps from the circle into X.

The study of the homology of X^{S^1} is motivated by the following result of Gromoll and Meyer:

THEOREM [16]. Assume that X is a simply connected, closed smooth manifold, and that for some field \Bbbk the betti numbers $b_q(X^{S^1}; \Bbbk)$ are unbounded. Then X has infinitely many distinct closed geodesics in any Riemannian metric.

(The proof in [16] is for $k = \mathbb{R}$, but the arguments work in general.)

The Gromoll-Meyer theorem raises the problem of finding simple criteria on a topological space X which imply that the $b_q(X^{S^1}; \Bbbk)$ are unbounded for some \Bbbk . This problem was solved for $\Bbbk = \mathbb{Q}$ by Sullivan and Vigué-Poirrier [28]. They considered simply connected spaces X such that dim $H^*(X; \mathbb{Q})$ was finite, and they showed that then the $b_q(X^{S^1}; \mathbb{Q})$ were unbounded if and only if the cohomology algebra $H^*(X; \mathbb{Q})$ was not generated by a single class. And they drew the obvious corollary following from the Gromoll-Meyer theorem.