RINGS OF DIFFERENTIAL OPERATORS ON ONE DIMENSIONAL ALGEBRAS

MARC CHAMARIE AND IAN M. MUSSON

Let k be an algebraically closed field of characteristic zero, and A a finitely generated k-algebra of Krull dimension at most one. In this paper we study the ring of differential operators $\mathscr{D}(A)$. For example we obtain necessary and sufficient conditions for $\mathscr{D}(A)$ to be a direct sum of Simple rings, or to be left or right Noetherian.

0.1. Let k be an algebraically closed field of characteristic zero and A a finitely generated (commutative) k-algebra. The primary purpose of this paper is to study the ring $\mathscr{D}(A)$ of differential operators on A when dim(A), the Krull dimension of A, is at most one. If A is also reduced or is a domain $\mathscr{D}(A)$ has been studied extensively in [10] and [15] and we prove analogues of the main results of these papers. For example

THEOREM A. Let A be a finitely generated k-algebra with Krull dimension at most one. Then

(a) D(A) is right Noetherian and finitely generated as a k-algebra.
(b) D(A) is left Noetherian if and only if A has an artinian quotient ring.

0.2. One of the main ideas in [15] is to compare $\mathscr{D}(A)$, for A a domain, to $\mathscr{D}(\widetilde{A})$ where \widetilde{A} is the integral closure of A. In particular, [15, Theorem B] gives necessary and sufficient conditions for $\mathscr{D}(A)$ and $\mathscr{D}(\widetilde{A})$ to be Morita equivalent. We prove a similar result here. We denote the nilradical of A by N(A), and say that A has *injective normalisation* if every maximal ideal of A/N(A) is contained in a unique maximal ideal of its integral closure.

THEOREM B. Let A be a finitely generated algebra with $dim(A) \le 1$ and let \widetilde{A} be the integral closure of A/N(A). Then the following are equivalent:

(1) $\mathscr{D}(A)$ is Morita equivalent to $\mathscr{D}(\widetilde{A})$.