ON TWO POLYNOMIAL SPACES ASSOCIATED WITH A BOX SPLINE

CARL DE BOOR, NIRA DYN, AND AMOS RON

The polynomial space \mathcal{H} spanned by the integer translates of a box spline M admits a well-known characterization as the joint kernel of a set of homogeneous differential operators with constant coefficients. The dual space \mathcal{H}^* has a convenient representation by a polynomial space \mathcal{P} , explicitly known, which plays an important role in box spline theory as well as in multivariate polynomial interpolation.

In this paper we characterize the dual space \mathscr{P} as the joint kernel of simple differential operators, each one a power of a directional derivative. Various applications of this result to multivariate polynomial interpolation, multivariate splines and duality between polynomial and exponential spaces are discussed.

1. Introduction. The space $H(\phi)$ of all exponentials in the linear span $S(\phi)$ of the integer translates of a compactly supported distribution ϕ is of basic importance in multivariate spline theory since, in principle, it allows the construction of good approximation maps to $S(\phi)$ from spaces containing $S(\phi)$. Generically, $H(\phi)$ is *D*-invariant (i.e., closed under differentiation), hence is the joint kernel for a set $\{p(D): p \in I_{H(\phi)}\}$ of differential operators with constant coefficients, with $I_{H(\phi)}$ a polynomial ideal of finite codimension (in the space Π of all multivariate polynomials, i.e., an ideal of transcendental dimension 0, hence with finite variety). An understanding of the interplay between the space $H(\phi)$ and its associated ideal $I_{H(\phi)}$ is useful in the determination of the basic properties of $H(\phi)$ such as its spectrum, its dimension, and its local approximation order.

For the important special case when ϕ is a polynomial box spline (and $\mathscr{H} := H(\phi)$ is thus a polynomial space), an explicit set of generators for the ideal $I_{\mathscr{H}}$ is known [**BH1**], but nevertheless, the construction of their joint kernel was found to be very difficult. At the same time, a polynomial space \mathscr{P} (of very simple structure) is known which serves as a natural dual for \mathscr{H} and is of substantial use in the analysis of \mathscr{H} . Specifically, the duality between \mathscr{H} and \mathscr{P} has been used in [**DR1**] in the investigation of the local approximation order of some exponential spaces, in [**DR1**,2] in the solution of an