# HARMONIC MAJORIZATION OF A SUBHARMONIC FUNCTION ON A CONE OR ON A CYLINDER 

H. Yoshida<br>To Professor N. Yanagihara on his 60th birthday

For a subharmonic function $u$ defined on a cone or on a cylinder which is dominated on the boundary by a certain function, we generalize the classical Phragmén-Lindelöf theorem by making a harmonic majorant of $u$ and show that if $u$ is non-negative in addition, our harmonic majorant is the least harmonic majorant. As an application, we give a result concerning the classical Dirichlet problem on a cone or on a cylinder with an unbounded function defined on the boundary.

1. Introduction. Let $\mathbb{R}$ and $\mathbb{R}_{+}$be the sets of all real numbers and all positive real numbers, respectively. The $m$-dimensional Euclidean space is denoted by $\mathbb{R}^{m}(m \geq 2)$ and $O$ denote the origin of it. By $\partial S$ and $\bar{S}$, we denote the boundary and the closure of a set $S$ in $\mathbb{R}^{m}$. Let $|P-Q|$ denote the Euclidean distance between two points $P, Q \in \mathbb{R}^{m}$. A point on $\mathbb{R}^{m}(m \geq 2)$ is represented by $(X, y), X=$ $\left(x_{1}, x_{2}, \ldots, x_{m-1}\right)$. We introduce the spherical coordinates $(r, \Theta)$, $\Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{m-1}\right)$, in $\mathbb{R}^{m}$ which are related to the coordinates $(X, y)$ by

$$
\begin{cases}x_{1}=r\left(\prod_{j=1}^{m-1} \sin \theta_{j}\right), \quad y=r \cos \theta_{1}, \\ x_{m+1-k}=r\left(\prod_{j=1}^{k-1} \sin \theta_{j}\right) \cos \theta_{k} & (m \geq 3,2 \leq k \leq m-1), \\ x_{1}=r \cos \theta_{1}, \quad y=r \sin \theta_{1} \quad(m=2),\end{cases}
$$

where $0 \leq r<+\infty$ and $-\frac{1}{2} \pi \leq \theta_{m-1}<\frac{3}{2} \pi(m \geq 2), 0 \leq \theta_{j} \leq \pi$ ( $m \geq 3,1 \leq j \leq m-2$ ). The unit sphere and the surface area $2 \pi^{m / 2}\{\Gamma(m / 2)\}^{-1}$ of it are denoted by $\mathbb{S}^{m-1}$ and $s_{m}(m \geq 2)$, respectively. The upper half unit sphere $\left\{(1, \Theta) \in \mathbb{S}^{m-1} ; 0 \leq \theta_{1}<\frac{\pi}{2}\right.$ (if $m=2$, then $\left.\left.0<\theta_{1}<\pi\right)\right\}$ is also denoted by $\mathbb{S}_{+}^{m-1}(m \geq 2)$. For simplicity, a point $(1, \Theta)$ on $\mathbb{S}^{m-1}$ and a set $S, S \subset \mathbb{S}^{m-1}$, are often identified with $\Theta$ and $\{\boldsymbol{\Theta} ;(1, \boldsymbol{\Theta}) \in S\}$, respectively. For two

