GENERALIZED CLIFFORD-LITTLEWOOD-ECKMANN GROUPS II: LINEAR REPRESENTATIONS AND APPLICATIONS

Tara L. Smith

This paper presents applications of the decomposition of generalized Clifford-Littlewood-Eckmann groups, or CLE-groups, which are given by presentations of the type

$$
\begin{aligned}
& \mathbf{G}=\left\langle\omega, a_{1}, \ldots, a_{r}\right| \omega^{n}=1, a_{i}^{n}=\omega^{e(i)} \forall i, \\
& \\
& \left.a_{i} a_{j}=\omega a_{j} a_{i} \forall i<j, \omega a_{i}=a_{\imath} \omega \forall i\right\rangle .
\end{aligned}
$$

We begin by studying the irreducible complex representations of the "building block groups" of orders n^{2} and n^{3}, and how the representations for the composite groups are constructed from them. This of course also gives a complete set of inequivalent irreducible matrix representations for the generalized Clifford algebras corresponding to these groups. We apply these representation-theoretic results to determine the size of the maximal abelian subgroups of these groups, and to present a generalization of a result of Littlewood on maximal sets of anticommuting matrices. In the final section we consider an alternative generalization of the CLE-groups, in which we require $a_{i}^{n}=1$, but allow $a_{i} a_{j}=\omega^{k} a_{j} a_{i}$ for fixed k dividing n, where possibly $k>1$. The irreducible complex representations of these groups are then calculated.

Introduction. These representations have been studied from the standpoint of projective representations of $(\mathbb{Z} / n \mathbb{Z})^{r}$ in [S-I]. However we feel that the presentation given here is somewhat clearer. The results again are of interest to physicists in a number of applications (see [S-I], [Kw]). Throughout this paper the notation and conventions will follow those of [Sm1], [Sm2]. The results of [Sm2] concerning the explicit decomposition of the groups will be used extensively here. The corresponding generalized Clifford algebras are studied in [$\mathbf{S m 3} 3$.

1. Linear representations. The first application of the decomposition results obtained in [Sm2] is the determination of the irreducible complex representations for the generalized group $\mathbf{G}=\left\langle\omega, a_{1}, \ldots, a_{r}\right|$ $\left.\omega^{n}=1, a_{i}^{n}=\omega^{e(i)} \forall i, a_{i} a_{j}=\omega a_{j} a_{i} \forall i<j, \omega a_{i}=a_{i} \omega \quad \forall i\right\rangle$. To begin we need some general facts about representations of finite groups, which are found in [I].
