THE PROPER FORCING AXIOM AND STATIONARY SET REFLECTION

ROBERT E. BEAUDOIN

Our main result is that the proper forcing axiom (PFA) is equiconsistent with "PFA + there is a nonreflecting stationary subset of ω_2 ." More generally we show for any cardinals $n < m \le \aleph_2$ that if PFA⁺(n) is consistent with ZFC then so is "PFA⁺(n) + there are m mutually nonreflecting stationary subsets of ω_2 ." As corollaries we can show that if $n < m \le \aleph_1$ then PFA⁺(n) (if consistent) does not imply PFA⁺(m), and that PFA (if consistent) does not imply Martin's's maximum.

1. Introduction. Recently much attention has been given to various strengthenings of Martin's axiom for \aleph_1 . Following [FMS] let us denote by MA(Γ), where Γ is a class of partial orders, the statement:

If $P \in \Gamma$ and Δ is a family of at most \aleph_1 dense subsets of P, then there is a Δ -generic filter on P.

Thus letting Γ be the class of all partial orders having the c.c.c., MA(Γ) becomes Martin's axiom (for \aleph_1 dense sets). Taking Γ to be the class of proper partial orders, MA(Γ) becomes the proper forcing axiom (PFA). Taking Γ to be the class of all orders P so that forcing the P preserves the stationarity of subsets of ω_1 , MA(Γ) becomes Martin's maximum (MM), discussed in [FMS].

One may fortify these axioms by demanding that the filter obtained not only be generic, but also respect the stationarity of a collection of subsets (in the generic extension) of ω_1 . That is, one may consider the axioms

> $MA^+(\Gamma, \kappa)$: If $P \in \Gamma$, Δ is a family of at most \aleph_1 dense subsets of P, and $\{\mathbf{S}_{\alpha} : \alpha < \kappa\}$ is a family of terms, each forced by every condition in P to denote a stationary subset of ω_1 , then there is a Δ -generic filter G on P so that for every $\alpha < \kappa$, $\mathbf{S}_{\alpha}(G)$ is stationary in ω_1 .

(Here $\mathbf{S}_{\alpha}(G) = \{\beta < \omega_1 : \exists p \in G \ p \Vdash "\beta \in \mathbf{S}_{\alpha}"\}$, the interpretation of the term \mathbf{S}_{α} by the filter G.) If Γ is the class of proper