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THE PROPER FORCING AXIOM
AND STATIONARY SET REFLECTION

ROBERT E. BEAUDOIN

Our main result is that the proper forcing axiom (PFA) is equicon-
sistent with "PFA + there is a nonreflecting stationary subset of
a>2." More generally we show for any cardinals n < m < N2 that if
PFA+(n) is consistent with ZFC then so is "PFA+(«) + there are
m mutually nonreflecting stationary subsets of ω2." As corollaries
we can show that if n < m < Ni then PFA+(«) (if consistent) does
not imply PFA + (m), and that PFA (if consistent) does not imply
Martin Vs maximum.

1. Introduction. Recently much attention has been given to various
strengthenings of Martin's axiom for Ni. Following [FMS] let us
denote by MA(Γ), where Γ is a class of partial orders, the statement:

If P G Γ and Δ is a family of at most Ni dense subsets
of P, then there is a Δ-generic filter on P .

Thus letting Γ be the class of all partial orders having the c.c.α,
MA(Γ) becomes Martin's axiom (for Ni dense sets). Taking Γ to be
the class of proper partial orders, MA(Γ) becomes the proper forcing
axiom (PFA). Taking Γ to be the class of all orders P so that forcing
the P preserves the stationarity of subsets of ω\, MA(Γ) becomes
Martin's maximum (MM), discussed in [FMS].

One may fortify these axioms by demanding that the filter obtained
not only be generic, but also respect the stationarity of a collection of
subsets (in the generic extension) oϊ ω\. That is, one may consider
the axioms

MA+(Γ, K) : If P e Γ, Δ is a family of at most Ni
dense subsets of P, and {Sα : a < K} is a family of
terms, each forced by every condition in P to denote a
stationary subset of ω\, then there is a Δ-generic filter
G on P so that for every a <κ, Sa(G) is stationary
in coi.

(Here Sa(G) = {β < ωx : 3p e G p Ih "β e Sα"}, the interpreta-
tion of the term Sa by the filter G.) If Γ is the class of proper
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