ON THE ROMANOV KERNEL
 AND KURANISHI'S L^{2}-ESTIMATE FOR $\bar{\partial}_{b}$ OVER A BALL IN THE STRONGLY PSEUDO CONVEX BOUNDARY

takao Akahori and Harunori Ameku

Abstract

As is proved by Kerzman-Stein, over a compact strongly pseudo convex boundary in C^{n}, Szegö projection S is the operator defined by Henkin-Ramirez modulo compact operators. While, over a special ball, U_{ε}, in the strongly pseudo convex boundary, in order to obtain a local embedding theorem of CR-structures, Kuranishi constructed the Neumann type operator N_{b} for $\bar{\partial}_{b}$ and so we have a local Szegö operator by $$
S_{U_{\varepsilon}}=\mathrm{id}-\bar{\partial}_{b}^{*} N_{b} \bar{\partial}_{b} \quad \text { on } U_{\varepsilon}
$$ where $\bar{\partial}_{b}^{*}$ means the adjoint operator of $\bar{\partial}_{b}$. There might be a relation between $S_{U_{e}}$ and the Romanov kernel like the case of the Szegö operator and the Henkin-Ramirez kernel. We study this problem and show some estimates for the Romanov kernel.

0. Introduction. Let $\left(M,{ }^{\circ} T^{\prime \prime}\right)$ be an abstract strongly pseudo convex CR-manifold. Then as is well known, if $\operatorname{dim}_{R} M=2 n-1 \geq$ 7, $\left(M,{ }^{\circ} T^{\prime \prime}\right)$ is locally embeddable in a complex euclidean space $C^{n}((A k 3),(K))$. In the proof of this local embedding theorem, it is shown that: over a special ball in the strongly pseudo convex boundary, an L^{2}-estimate for $\bar{\partial}_{b}$, which is stronger than the standard L^{2} estimate, is established and so the L^{2}-solution operator for $\bar{\partial}_{b}$ is obtained. This operator plays an essential role in our local embedding theorem. Therefore it must be important to study this solution operator for $\bar{\partial}_{b}$ precisely.

In order to get a solution operator, there exists another method. By using an integral formula, a local solution operator for $\bar{\partial}_{b}$ is constructed explicitly by Henkin and Harvey-Polking. Obviously, these solution operators are different. And it seems quite interesting to study the relation between the L^{2}-solution for $\bar{\partial}_{b}$ and the explicit solution, obtained by using an integral formula. We recall the $\bar{\partial}$-case over a strongly pseudo convex domain in C^{n}. In this case, the explicit solu= tion, constructed by Lieb and Range, is a certain kind of the essential part of the Kohn's L^{2}-solution. Therefore we could hope for a similar result in the $\bar{\partial}_{b}$ case over a special ball in the strongly pseudo

