ON THE ROMANOV KERNEL AND KURANISHI'S L^2 -ESTIMATE FOR $\overline{\partial}_b$ OVER A BALL IN THE STRONGLY PSEUDO CONVEX BOUNDARY

TAKAO AKAHORI AND HARUNORI AMEKU

As is proved by Kerzman-Stein, over a compact strongly pseudo convex boundary in C^n , Szegö projection S is the operator defined by Henkin-Ramirez modulo compact operators. While, over a special ball, U_{ε} , in the strongly pseudo convex boundary, in order to obtain a local embedding theorem of CR-structures, Kuranishi constructed the Neumann type operator N_b for $\overline{\partial}_b$ and so we have a local Szegö operator by

$$S_{U_e} = \mathrm{id} - \overline{\partial}_b^* N_b \overline{\partial}_b$$
 on U_e ,

where $\overline{\partial}_b^*$ means the adjoint operator of $\overline{\partial}_b$. There might be a relation between S_{U_a} and the Romanov kernel like the case of the Szegö operator and the Henkin-Ramirez kernel. We study this problem and show some estimates for the Romanov kernel.

0. Introduction. Let $(M, {}^{\circ}T'')$ be an abstract strongly pseudo convex CR-manifold. Then as is well known, if $\dim_R M = 2n - 1 \ge 7$, $(M, {}^{\circ}T'')$ is locally embeddable in a complex euclidean space $C^n((Ak3), (K))$. In the proof of this local embedding theorem, it is shown that: over a special ball in the strongly pseudo convex boundary, an L^2 -estimate for $\overline{\partial}_b$, which is stronger than the standard L^2 -estimate, is established and so the L^2 -solution operator for $\overline{\partial}_b$ is obtained. This operator plays an essential role in our local embedding theorem. Therefore it must be important to study this solution operator for $\overline{\partial}_b$ precisely.

In order to get a solution operator, there exists another method. By using an integral formula, a local solution operator for $\overline{\partial}_b$ is constructed explicitly by Henkin and Harvey-Polking. Obviously, these solution operators are different. And it seems quite interesting to study the relation between the L^2 -solution for $\overline{\partial}_b$ and the explicit solution, obtained by using an integral formula. We recall the $\overline{\partial}$ -case over a strongly pseudo convex domain in C^n . In this case, the explicit solution, constructed by Lieb and Range, is a certain kind of the essential part of the Kohn's L^2 -solution. Therefore we could hope for a similar result in the $\overline{\partial}_b$ case over a special ball in the strongly pseudo