CHERN CLASSES AND COHOMOLOGY FOR RANK 2 REFLEXIVE SHEAVES ON P³

MARGHERITA ROGGERO AND PAOLO VALABREGA

The paper shows that, if F is a nonsplit rank 2 reflexive sheaf on \mathbf{P}^3 , then the knowledge of the numbers $d_n = h^2(F(n)) - h^1(F(n))$ gives an explicit algorithm to compute the Chern classes c_1 , c_2 , c_3 and the dimensions $h^0(F(n))$, for all n (in particular the first integer a such that the sheaf F(a) has some nonzero section). If the sheaf is a vector bundle it is also proved that the knowledge of the numerical sequence $\{h^1(F(n))\}$ together with the first Chern class gives all the information as above. In some special cases, i.e. when $h^1(F(n)) \neq 0$ for at most three values of n, an algorithm is also produced to compute the first Chern class from the sequence $\{h^1(F(n))\}$. Vector bundles with natural cohomology are also discussed.

It must be remarked that, if one knows not only the dimensions $h^1(F(n))$, for all n, but also the whole structure of the Rao-module $\bigoplus H^1(F(n))$, then the first Chern class c_1 is uniquely determined (as it is shown in a paper by P. Rao).

n1. F is a rank 2 nonsplit reflexive sheaf on $\mathbf{P}^3 = \mathbf{P}$. Its Chern classes are c_1 , c_2 , c_3 ; if it is normalized, then $c_1 = 0$ or -1. Once and for all $h^i(F(n)) = \dim F(n)$, i = 0, 1, 2, 3.

Now we give a list of well-known properties useful throughout the paper.

1. If $c_1(F) = c_1$, the associated normalized reflexive sheaf is defined as $F^n = F(\varepsilon)$ where

$$\varepsilon = \begin{cases} \frac{c_1}{2} & \text{for } c_1 \text{ even,} \\ -\frac{c_1+1}{2} & \text{for } c_1 \text{ odd.} \end{cases}$$

2. With every reflexive sheaf F there are two associated numbers:

$$a = a(F) =$$
 smallest integer n such that $h^0(F(n)) \neq 0$,
 $a_1 = a_1(F) =$ smallest integer $n \ge a$ such that
 $h^0(F(n)) > h^0(O_P(n-a))$.

Since F is not split, then every general nonzero section of F(a) gives rise to a zero locus which is necessarily a curve in **P** (see [H1], n.1 and [H2], n.4); this is false for a split sheaf. The same is true for