SURGERY WITH FINITE FUNDAMENTAL GROUP II: THE OOZING CONJECTURE

R. JAMES MILGRAM

We determine characteristic class formulae for surgery problems over any compact oriented and closed manifold with finite fundamental group. This essentially evaluates the boundary maps in the surgery exact sequences

$$\cdots \xrightarrow{\partial} L_{n+1}^h(\mathbb{Z}\pi) \longrightarrow \mathscr{HT}(M^n) \longrightarrow [M^n, G/TOP] \xrightarrow{\partial} L_n^h(\mathbb{Z}\pi).$$

(The final step in determining ∂ is carried out in a sequel which represents joint work with I. Hambleton, L. Taylor, and B. Williams.) These formulae involve the *L*-genus of *M*, pullbacks of the classes K_{4i} and k_{4i+2} in $H^*(G/TOP)$ and characteristic classes of the universal covering of *M* (coming from $H^*(B_{\pi_1(M)})$). It turns out that only classes in the first three of these groups, * = 1, 2, 3, are needed. This can be interpreted as saying that only codimension 1, 2, and 3 submanifolds are needed to determine the surgery obstruction. In this form our result was originally conjectured twenty years ago and has become known as the oozing conjecture.

In [5] I showed that there are only four types of surgery obstruction possible for surgery problems over closed manifolds with finite π_1 when the problem is of the form

$$M \times K^{4i+2} \longrightarrow M \times S^{4i+2}.$$

In order to do this I introduced an intermediate L group $L^h_*(\mathbf{Z}(\zeta_3)\pi)$ and maps

$$e_{\zeta_1}: \Omega_*(B_\pi) \longrightarrow L^h_*(\mathbf{Z}(\zeta_3)\pi)$$

which factor the product formula above. Then I showed that there were only four types of classes in the image of e_{ζ_3} which could possibly map non-trivially into the surgery groups.

In this paper I obtain characteristic class formulae for the maps e_{ζ_3} , at least as regards the specific classes described above. First recall the main results of [5]:

THEOREM A. Let π be a finite 2-group, then there are universal kernels $K_i \subset L_i^h(\mathbb{Z}(\zeta_3)\pi)$ with $L_0^h(\mathbb{Z}(\zeta_3)\pi)/K_0 = \mathbb{Z}/2$, natural with