# THE SPACE OF INFINITE-DIMENSIONAL COMPACTA AND OTHER TOPOLOGICAL COPIES OF $\left(l_{f}^{2}\right)^{\omega}$ 

J. J. Dijkstra, J. van Mill, and J. Mogilski<br>To Doug Curtis, on the occasion of his retirement


#### Abstract

We show that there exists a homeomorphism from the hyperspace of the Hilbert cube $Q$ onto the countable product of Hilbert cubes such that the $\geq k$-dimensional sets are mapped onto $B^{k} \times Q \times Q \times$ $\cdots$, where $B$ is the pseudoboundary of $Q$. In particular, the infinitedimensional compacta are mapped onto $B^{\omega}$, which is homeomorphic to the countably infinite product of $l_{f}^{2}$. In addition, we prove for $k \in\{1,2, \ldots, \infty\}$ that the space of uniformly $\geq k$-dimensional sets in $2^{Q}$ is also homeomorphic to $\left(l_{f}^{2}\right)^{\omega}$.


1. Introduction. If $X$ is a compact metric space then $2^{X}$ denotes the hyperspace of $X$ equipped with the Hausdorff metric. According to Curtis and Schori [6] $2^{X}$ is homeomorphic to the Hilbert cube $Q$ whenever $X$ is a nontrivial Peano continuum.

Our primary interest is the subset of $2^{Q}$ consisting of all infinitedimensional compacta. This space is an $F_{\sigma \delta}$-set in $2^{Q}$ and one may expect that it is homeomorphic to the countable product of the preHilbert space

$$
l_{f}^{2}=\left\{x \in l^{2}: x_{i}=0 \text { for all but finitely many } i\right\} .
$$

We prove this conjecture. The space $\left(l_{f}^{2}\right)^{\omega}$ is in a sense maximal in the class $\mathscr{F}_{\sigma \delta}$ of absolute $F_{\sigma \delta}$-spaces and it has received a lot of attention in recent years because of its topological equivalence to numerous function spaces, see e.g. Dijkstra et al. [7].

For $k \in\{0,1,2, \ldots, \infty\}$ we let $\operatorname{Dim}_{\geq k}(X)$ denote the subspace consisting of all $\geq k$-dimensional elements of $2^{X}$. We define $\operatorname{Dim}_{k}(X)$ and $\operatorname{Dim}_{\leq k}(X)$ in the same way. Let $\overline{\operatorname{Dim}}_{\geq k}(X)$ stand for all uniformly $\geq k$-dimensional compacta in $2^{X}$, i.e. spaces such that every nonempty open subset is at least $k$-dimensional. The default value here is $X=Q$, i.e., $\operatorname{Dim}_{>k}=\operatorname{Dim}_{>k}(Q)$ etc.

Let $I$ stand for the interval $[0,1]$. The Hilbert cube is denoted by $Q=\prod_{i=1}^{\infty} I$ with metric $d(x, y)=\max \left\{2^{-i}\left|x_{i}-y_{i}\right|: i \in \mathbf{N}\right\}$. The pseudointerior of $Q$ is $s=\prod_{i=1}^{\infty}(0,1)$ and $B=Q \backslash s$ is the pseudoboundary.

