ON THE REPRESENTATION OF THE DETERMINANT OF HARISH-CHANDRA'S C-FUNCTION OF $SL(n, \mathbb{R})$

SHOHEI TANAKA

This paper gives the explicit representation of the determinant of the Harish-Chandra C-function of $SL(n\,,\,\mathbb{R})$ $(n\geq 3)$ and some application.

1. Introduction. Let G be a semisimple Lie group with finite center, K a maximal compact subgroup of G. Let θ be the Cartan involution of G fixing K. Let P be a cuspidal parabolic subgroup and P=MAN its Langlands decomposition. For σ in \widehat{M}_d and γ in \widehat{K} , we set $\tau=(\gamma,\gamma)$ and denote the space of the τ_M -spherical cusp forms on M by ${}^0\mathfrak{C}_M(M,\tau_M)$. The Harish-Chandra C-function $C_{\overline{P}|P}(1:\nu)$ has important information in the representation theory.

In the determinant of $C_{\overline{P}|P}(1:\nu)$, L. Cohn has proved the following results.

THEOREM (see [2], p. 129). There exist functions $\mu_1, \ldots, \mu_r \in \mathfrak{a}^*$ and constants $p_{i,j}$, $q_{i,j}$ $(i = 1, \ldots, r, j = 1, \ldots, j_i)$ depending on τ such that

$$\det C_{\overline{P}|P}(1:\nu) = \operatorname{const} \cdot \prod_{i=1}^{r} \prod_{j=1}^{j_i} \frac{\Gamma(\frac{\langle \nu, \alpha_i \rangle}{2\langle \mu_i, \alpha_i \rangle} + q_{i,j})}{\Gamma(\frac{\langle \nu, \alpha_i \rangle}{2\langle \mu_i, \alpha_i \rangle} + p_{i,j})},$$

where $\alpha_1, \ldots, \alpha_r$ are reduced a-roots.

He gives a conjecture that the constants $p_{i,j}$ and $q_{i,j}$ are rational numbers and depending linearly on the highest weight of the irreducible components of τ .

Let G be $SL(n, \mathbb{R})$ and P the minimal parameter subgroup of G. In the case that n=2, the Harish-Chandra C-function and determinant of it are well known explicitly. If n is 3 or 4, in [4] Eguchi and the author give the explicit formula of the determinant of Harish-Chandra's C-function of G, which solves Cohn's conjecture affirmatively. The purpose of this paper is to extend the result in [4]