ON CERTAIN IWAHORI INVARIANTS IN THE UNRAMIFIED PRINCIPAL SERIES

Mark Reeder

Abstract

An affine Hecke algebra is additively the tensor product of a finite dimensional Hecke algebra with the coordinate ring Θ of a complex torus. In this paper we give explicit formulas for eigenvectors of $\boldsymbol{\Theta}$ in unramified principal series representations of the reductive p-adic group G associated to \mathscr{H}. This leads to new information about intertwining operators, Jacquet modules and submodules of principal series representations.

Let G be a reductive p-adic group, τ an unramified character of a minimal parabolic subgroup P, and $I(\tau)=\operatorname{ind}_{P}^{G} \tau$ the induced principal series representation of G. The space $I(\tau)^{B}$ of vectors in $I(\tau)$ which are invariant under an Iwahori subgroup B affords a representation of the affine Hecke algebra \mathscr{H} corresponding to G. It is known that taking B-invariants yields an equivalence of categories between (admissible G-modules generated by their B-invariants) and (finite dimensional \mathscr{H} modules). Thus the representation theory of $I(\tau)$ is captured by the action of \mathscr{H} on $I(\tau)^{B}$. The irreducible representations of \mathscr{H} have been classified ([K-L] and [G]). However, the decomposition of $I(\tau)^{B}$ itself, though well studied (see the references), is not completely understood. The purpose of this paper is to describe certain functions in $I(\tau)^{B}$ which are important for finding the submodules of this representation explicitly. This investigation enables us to extend some results of Rodier [R] and Rogawski [Ro], and also yields a new proof of the irreducibility criterion for $I(\tau)$ due to Kato and Müller ([Ka], [M]).

Recall (cf. [L]) that as a vector space, \mathscr{H} is the tensor product of two subalgebras

$$
\mathscr{H}=\boldsymbol{\Theta} \otimes \mathscr{H}_{W},
$$

where \mathscr{H}_{W} is the Hecke algebra of the finite Weyl group W of G and Θ is isomorphic to the coordinate ring of a maximal torus T in the complex Lie group which is dual to G in the sense of Langlands. As a \mathscr{H}_{W}-module, $I(\tau)^{B}$ is always the regular representation of \mathscr{H}_{W}, so as τ varies, the change in the structure of $I(\tau)^{B}$ is seen in the action of

