A PHRAGMÉN-LINDELÖF THEOREM

X. T. LIANG AND Y. W. LU

Let Ω be an unbounded and connected domain in E^n . Consider on $\Omega \times (0, \infty)$ the parabolic equation

$$u_t - \operatorname{div} \mathbf{A}(x, t, u, \nabla u) = B(x, t, u, \nabla u).$$

Under proper conditions a theorem of Phragmén-Lindelöf type is proved for generalized solutions of the equation.

Introduction. The classical Phragmén-Lindelöf principle gives an important property of harmonic functions defined on a plane sector domain. That has been generalized not only to generalized solutions of quasi-linear elliptic equations in more general unbounded and connected domains (see [1]-[5]), but also to the ones of quasi-linear parabolic equations in divergence form which have their principal parts only [6]. In this paper the result is extended to generalized solutions of the equation (1). We prove the result by an argument based on the technique of Moser [7] and Ladyženskaja-Ural'ceva [8]. We have not seen any reference discussing such behavior for solutions of parabolic equations except [6] where the simpler situation of the equation (1), namely $B \equiv 0$, is considered.

The paper is organized as follows. In §1 the main result is mentioned and in §2 several lemmata are given as preliminaries. Finally, a full proof of our theorem is stated in §3.

1. Main result. Let Ω be an unbounded and connected domain in the *n*-dimensional Euclidean space E^n . Denote by $\partial \Omega$ the boundary of Ω . On $\Omega \times (0, \infty)$ we consider the following equation:

(1)
$$u_t - \operatorname{div} \mathbf{A}(x, t, u, \nabla u) = B(x, t, u, \nabla u)$$

where $A(x, t, u, \xi)$ and $B(x, t, u, \xi)$ are defined on $\Omega \times (0, \infty) \times E^1 \times E^n$, continuous with respect to u and ξ for fixed x and t, measurable with respect to x and t for fixed u and ξ , and satisfying the following structural conditions:

(2)
$$\xi \cdot \mathbf{A}(x, t, u, \xi) \ge \kappa_0 |\xi|^2,$$

$$|\mathbf{A}(x, t, u, \xi)| \le \kappa_1 |\xi|,$$

$$|B(x, t, u, \xi)| \le b(x, t) |\xi|,$$