REDUCTION OF TOPOLOGICAL STABLE RANK IN INDUCTIVE LIMITS OF C^{*}-ALGEBRAS

Marius Dădărlat, Gabriel Nagy, András Némethi and Cornel Pasnicu

Abstract

We consider inductive limits A of sequences $A_{1} \rightarrow A_{2} \rightarrow \cdots$ of finite direct sums of C^{*}-algebras of continuous functions from compact Hausdorff spaces into full matrix algebras. We prove that A has topological stable rank (tsr) one provided that A is simple and the sequence of the dimensions of the spectra of A_{i} is bounded. For unital $A, \operatorname{tst}(A)=1$ means that the set of invertible elements is dense in A. If A is infinite dimensional, then the simplicity of A implies that the sizes of the involved matrices tend to infinity, so by general arguments one gets $\operatorname{tsr}\left(A_{i}\right) \leq 2$ for large enough i whence $\operatorname{tsr}(A) \leq 2$. The reduction of tsr from two to one requires arguments which are strongly related to this special class of C^{*}-algebras.

The problem of reduction of real rank (see [6]) for these algebras was recently studied in [2] in connection with some interesting features revealed in several papers ([3], [1], [15], [5], [12], [11]). The reduction of tsr and real rank for other classes of C^{*}-algebras was studied in [22], [21], [8], [24], [17], [25].

The paper consists of three sections:

1. Preliminaries and Notation
2. Local aspects of the connecting homomorphisms
3. The Main Result.

1.

1.1. For a unital C^{*}-algebra A and a finitely generated projective A-module E, we denote by $\operatorname{End}_{A}(E)$ the algebra of A-linear endomorphisms of E and by $\mathrm{GL}_{A}(E)$ the group of units of $\operatorname{End}_{A}(E)$. For $E=A^{n}$ we shall write $\mathrm{GL}(n, A)$ for $\mathrm{GL}_{A}\left(A^{n}\right)$ and $\mathrm{GL}^{0}(n, A)$ for the connected component of 1 . Let $\mathrm{U}(A)$ denote the unitary group of A and $\mathrm{U}(n):=\mathrm{U}\left(\mathbf{C}^{n}\right)$. A selfadjoint idempotent element of a C^{*}-algebra will be simply called projection.

Recall some definitions from [23]. For a unital C^{*}-algebra A and a natural number n let $L g_{n}(A)$ denote the set of n-tuples of elements of A which generate A as a left ideal. The topological stable rank of A is the least n (if it does not exist it will be taken by definition

