COMPACT OPERATIONS, MULTIPLIERS AND RADON-NIKODYM PROPERTY IN $J B^{*}$-TRIPLES

L. J. Bunce and C.-H. Chu

Abstract

We study the (weak) compactness of certain algebraic operations on $J B^{*}$-triples and we introduce multiplier triples. Applications to structure theory are given and connections with the Radon-Nikodym Property are described.

Introduction. Recently the authors [5] studied the Radon-Nikodym property (RNP) in the dual spaces of some complex Banach spaces known as $J B^{*}$-triples. A number of intrinsic characterisations were obtained. One of these was that, if A is a $J B^{*}$-triple, then A^{*} has the RNP if and only if A has a composition series of closed triple ideals (i.e. M-ideals) for which successive quotients can be realised either as spaces of compact operators from one Hilbert space to another or else are reflexive. This hints at a connection between the RNP and compact, and weakly compact, operators on A itself. This paper evolves from an investigation into the form and extent of this connection.

Thus, in a fairly systematic way, we study the (weak) compactness of natural algebraic operations, introduce the notion of a multiplier triple of a $J B^{*}$-triple (which may be of independent interest), and explain how the resulting phenomena interweave with the RNP.
$J B^{*}$-triples originate in the study of holomorphy in unspecified (possibly infinite) dimension and can be realised as that class of complex Banach spaces whose unit ball is a bounded symmetric domain (in finite dimensions, the classical Cartan domains of complex analysis) [23]. The considerable recent activity and rapid progress in $J B^{*}-$ triples is due in no small part to fertile applications in, amongst other topics (see [26, 27]), infinite dimensional Lie algebras, mathematical physics and operator spaces. Notably, the image of a contractive projection on a C^{*}-algebra is, while rarely a C^{*}-algebra, always a $J B^{*}$-triple [15].

1. Preliminaries. Precisely a $J B^{*}$-triple is a complex Banach space A with a continuous triple product $\{\ldots\}: A^{3} \rightarrow A$ which is linear and symmetric in the outer variables and antilinear in the middle variable, and satisfies
