ON THE POSTULATION OF 0-DIMENSIONAL SUBSCHEMES ON A SMOOTH QUADRIC

S. Giuffrida, R. Maggioni, and A. Ragusa

Abstract

If X is a 0 -dimensional subscheme of a smooth quadric $Q \cong$ $\mathbf{P}^{1} \times \mathbf{P}^{1}$ we investigate the behaviour of X with respect to the linear systems of divisors of any degree (a, b). This leads to the construction of a matrix of integers which plays the role of a Hilbert function of X; we study numerical properties of this matrix and their connection with the geometry of X. Further we relate the graded Betti numbers of a minimal free resolution of X on Q with that matrix, and give a complete description of the arithmetically Cohen-Macaulay 0 -dimensional subschemes of Q.

Introduction. In the last few years the interest about 0 -dimensional subschemes of \mathbf{P}^{n} has greatly grown, so many recent papers concern a deep investigation into the Hilbert function, free resolution, Betti numbers, and defining equations for such subschemes. On the other hand there has been a good deal of work on two codimensional subschemes of \mathbf{P}^{n}; hence, points of \mathbf{P}^{2}, which have both conditions, have been intensively studied. The interest on points of \mathbf{P}^{2} comes, also, because geometric properties of a variety can sometimes be given in terms of its generic hyperplane section; so, for studying curves of \mathbf{P}^{3}, one needs properties of 0 -dimensional subschemes of \mathbf{P}^{2}. A complete list of papers on these topics seems impossible to do; so we insert in the references just a few of them, which are more familiar to us.

It seems natural to generalize this situation from one side studying 0 -dimensional subschemes of any variety and in particular of surfaces, on the other side working on sections of varieties done by hypersurfaces of degree bigger than one. Therefore, a first step in this direction is to investigate 0-dimensional subschemes of a quadric ($\mathbf{P}^{1} \times \mathbf{P}^{1}$) with special regard to their behaviour with respect to the divisors of the quadric itself.

When one embeds the quadric Q in \mathbf{P}^{3}, any subscheme X of Q becomes a subscheme of \mathbf{P}^{3}; in that case one can relate properties of X as a subscheme of Q with those as a subscheme of \mathbf{P}^{3}.

Of course, studying subschemes of Q, the geometry of the surface Q plays a big role; in particular, the cohomology groups of Q play an

