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COBCAT AND SINGULAR BORDISM
A. K. DAs AND S. S. KHARE

Dold proved that a homomorphism ¢: H"(BO) — Z, corresponds
to a manifold A" if and only if ¢(Sq” u+ v, -u) =0, Vp >0 and
VYu € H"7?(BO), v, being the Wu class. The object of the present
work is to have a singular analogue of this result and to study the
bordism classification of singular manifolds in BO.

1. Introduction. Singh [1] has developed the notion of cobcat for
a manifold M" and has classified, upto bordism, all manifolds M"
with cobcat(M™) < 3. Cobcat(M") was defined to be the smallest
positive integer k such that the number (W --- Wip , [M"]) = 0 for
all partitions i; +---+ip,=n with k<p <n.

Here we develop the notion of cobcat for a singular manifold
(M", f) in a space X and discuss the bordism classification of all
singular manifolds (M", f) in BO with cobcat(M", f) <3, n=2".

Here all the manifolds are to be unoriented, smooth and closed, and
all the homology and cohomology coefficients are to be in Z;. The
space X is such that for each n, H,(X) and hence H"(X) is a finite
dimensional vector space over Z, .
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2. Preliminaries. Consider the set N,(.X) of bordism classes of n-
dimensional singular manifolds (M", f) in X, f: M" — X being a
continuous map. We know that N,(X) is an abelian group under the
operation “disjoint union”

[MT, Ail+ M7, Ll=[MTUM7, fiufl,
where fiU fo: M} UM} — X is given by
fix) if xe M},
(] X) = .
AU fx) {fz(x) if xeM}.

Further, we have

N.(X) = P Nu(X).

n>0
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