A GENERALIZATION OF MAXIMAL FUNCTIONS ON COMPACT SEMISIMPLE LIE GROUPS

Hendra Gunawan

Let G be a compact semisimple Lie group with finite centre. For each positive number s, let μ_{sH} denote the Ad(G)-invariant probability measure carried on the conjugacy class of $\exp(sH)$ in G. With this one-parameter family of measures, we define the maximal operator \mathcal{M}_H on $\mathcal{C}(G)$. We then estimate the Fourier transform of μ_{sH} and of some derived distributions. Our result leads to the boundedness of \mathcal{M}_H on $L^p(G)$, for all p greater than some index p_0 in (1, 2). This generalizes a recent result of M. Cowling and C. Meaney [2].

Introduction. Let G be a compact semisimple Lie group of rank l with finite centre, and with its Haar measure normalized to have total mass 1. Let g denote its Lie algebra, and let h be a maximal toral subalgebra of g. We denote by Φ the root system of (g^c, h^c) , and fix $\Delta = \{\alpha_j : j \in I\}$, where $I = \{1, \ldots, l\}$, to be a base of Φ (as in [3, §10.1]). With respect to Δ , we write Φ^+ for the set of positive roots, whose members are of the form

$$\alpha = \sum_{j \in I} n_j(\alpha) \alpha_j \,,$$

with $n_j(\alpha) \in \mathbb{Z}^+ \cup \{0\}$ for all $j \in I$, and Λ^+ for the set of dominant weights, which parametrizes the dual object of G.

We equip the Lie algebra \mathfrak{g} with the positive definite inner product (\cdot, \cdot) derived from the Killing form. For each $\nu \in \mathfrak{h}^*$, we define $H_{\nu} \in \mathfrak{h}$ by

$$\nu(H) = (H_{\nu}, H) \quad \forall H \in \mathfrak{h}.$$

We also transfer the inner product to \mathfrak{h}^* via

$$(\nu, \nu') = (H_{\nu}, H_{\nu'}) \quad \forall \nu, \nu' \in \mathfrak{h}^*.$$

The norm on \mathfrak{h}^* and \mathfrak{h} , induced by these inner products, will then be denoted by $|\cdot|$.

We choose a regular element $H \in \mathfrak{h}$, for which $\alpha(H) \neq 0$ for all $\alpha \in \Phi^+$, and fix R > 0 such that $\exp(sH)$ is regular in G for any