# LOCAL REAL ANALYTIC BOUNDARY REGULARITY OF AN INTEGRAL SOLUTION OPERATOR OF THE $\bar{\partial}$-EQUATION ON CONVEX DOMAINS 

Zhenhua Chen


#### Abstract

In this paper we show that a well known integral solution operator of the $\bar{\partial}$-equation on a convex domain $\Omega$ locally preserves the real analyticity of $\overline{\bar{y}}$-closed $(0,1)$ forms at boundary points near which $\partial \Omega$ is totally convex in the complex tangential directions.


1. Introduction. The real analytic boundary regularity of the canonical solution or Kohn's solution of the $\bar{\partial}$-equation was studied by many researchers [2], [3], [7], [8], [9], [10], [14], [15], [16]. In general, the canonical solution is not explicit. An interesting question is, whether we can find some explicit or computable solution of the $\bar{\partial}$ equation that is real analytically regular up to the boundary of pseudoconvex domains. In this paper we prove the following local real analytic boundary regularity of a well known integral solution operator of the $\bar{\partial}$-equation for totally convex domains (terminology will be defined in $\S 2$ ). The real analytic boundary regularity of the canonical solution of such domains has not been proved yet. The recent work of Boas and Straube [1] gives the global $C^{\infty}$ boundary regularity of the canonical solution for convex domains.

Theorem. Suppose $\Omega$ is a bounded convex domain in $\mathbb{C}^{n}$ with $C^{2}$ boundary. If $p$ is a real analytic boundary point of $\Omega$, and $\partial \Omega$ is totally convex at $p$ in the complex tangential directions, then the Henkin operator $T$ locally preserves the real analyticity of $\overline{\bar{D}}$-closed $(0,1)$ forms up to the boundary point $p$.

It had been conjectured for some time that global analytic hypoellipticity of the $\bar{\partial}$-Neumann problem held for weakly pseudoconvex domains, and this remains open. But local results on finite type domains came as a surprise comparing with $C^{\infty}$ results. A recent counterexample of Christ and Geller [6] shows that local real analytic boundary regularity of the $\overline{\bar{\partial}}$-equation does not hold for general pseudoconvex domains of finite type. We would like to point out that the domain

