## LIE ALGEBRAS OF TYPE $D_4$ OVER NUMBER FIELDS

## B. N. Allison

In this paper we show how to construct all central simple Lie algebras of type  $D_4$  over an algebraic number field. The construction that we use is a special case of a modified version of a construction due to G. B. Seligman. The starting point for the construction is an 8-dimensional nonassociative algebra with involution  $CD(\mathscr{B}, \mu)$  that is obtained by the Cayley-Dickson doubling process from a 4-dimensional separable commutative associative algebra  $\mathscr{B}$  and a nonzero scalar  $\mu$ . The algebra  $CD(\mathscr{B}, \mu)$  is used as the coefficient algebra for a Lie algebra  $\mathscr{T}(CD(\mathscr{B}, \mu), \gamma)$  that can be roughly described as the Lie algebra of  $3 \times 3$ -skew hermitian matrices with entries from  $CD(\mathscr{B}, \mu)$  relative to the involution  $X \to \gamma^{-1} \overline{X}^t \gamma$ , where  $\gamma$  is an invertible diagonal matrix with scalar entries. We show that any Lie algebra of type  $D_4$  over a number field can be constructed as  $\mathscr{T}(CD(\mathscr{B}, \mu), \gamma)$  for some choice of  $\mathscr{B}, \mu$  and  $\gamma$ . We also give isomorphism conditions for two Lie algebras constructed in this way.

As background, we note that the problem of constructing all central simple Lie algebras of a given type over a field of characteristic 0 has previously been solved for types  $A_n$   $(n \ge 1)$ ,  $B_n$   $(n \ge 2)$ ,  $C_n$   $(n \ge 3)$ ,  $D_n$   $(n \ge 5)$ ,  $G_2$  and  $F_4$  by W. Landherr, N. Jacobson, and M. L. Tomber ([J5, Chapter X], [F&F, Section 7]). Over number fields, this problem has been solved for types  $E_6$ ,  $E_7$  and  $E_8$  by J. C. Ferrar using the 2nd Lie algebra construction of J. Tits and the Galois cohomological results of M. Kneser, G. Harder and V. I. Cernousov ([F1], [F2], [F3]).

Our main tool in this paper will be an associative algebra invariant  $\mathscr{E}(\mathscr{L})$ , which we call the Allen invariant, that can be associated to any Lie algebra  $\mathscr{L}$  of type  $D_4$  over a field of characteristic 0.  $\mathscr{E}(\mathscr{L})$ was introduced for special  $D_4$ 's by Jacobson [J2] and in general by H. P. Allen [All1]. Sections 2-6 of this paper are devoted to the study of the invariant  $\mathscr{E}(\mathscr{L})$ . The main result obtained in these sections is a characterization, using the corestriction of algebras, of the associative algebras that can arise as Allen invariants of Lie algebras of type  $D_4$  over a number field. In §7 (and in an appendix—§12), we use the cohomological results of Harder and Kneser to prove a general isomorphism theorem for Lie algebras of type  $D_4$  over number