A_{∞} AND THE GREEN FUNCTION

JANG-MEI WU

Let G(x) be the Green function in a domain $\Omega \subseteq \mathbb{R}^m$ with a fixed pole, and Γ be an (m-1)-dimensional hyperplane. We give conditions on Ω and $\Omega \cap \Gamma$ so that $|\nabla G|$ is A_{∞} with respect to the (m-1)-dimensional measure on $\Omega \cap \Gamma$. Certain properties of the Riemann mapping of a simply-connected domain in \mathbb{R}^2 are extended to the Green function of domains in \mathbb{R}^m .

In [3], Fernández, Heinonen and Martio have proved the following:

THEOREM A. Let f be a conformal mapping from a simplyconnected planar domain Ω onto the unit disk Δ and L be a line segment in Ω . Then f(L) is a quasiconformal arc. Moreover, if L is a line segment on the boundary of a half plane contained in Ω , then $|f'| \in A_{\infty}(ds)$ on L with respect to the linear measure ds.

If L is any line segment in Ω , |f'| need not be in $A_{\infty}(ds)$ on L. In fact, Heinonen and Näkki [9] have proved the following:

THEOREM B. Let f be a conformal mapping from a simplyconnected domain Ω onto the unit disk Δ and L be a line segment in Ω . Then the following are equivalent:

- (1) $|f'| \in A_{\infty}(ds)$ on L,
- (2) f|L is quasisymmetric,
- (3) there exists a chord arc domain $D \subseteq \Omega$ so that $L \subseteq \overline{D}$,
- (4) there exists a quasidisk $D \subseteq \Omega$ so that $L \subseteq \overline{D}$.

Let μ and ν be two measures on \mathbb{R}^m $(m \ge 2)$. Recall that μ belongs to the Muckenhoupt class $A_{\infty}(d\nu)$ if there exist $\alpha, \beta \in (0, 1)$ such that whenever E is a measurable subset of a cube Q,

(0.1) $\nu(E)/\nu(Q) < \alpha \text{ implies } \mu(E)/\mu(Q) < \beta.$

If μ and ν have the doubling property, then $\mu \in A_{\infty}(d\nu)$ if and only if $\nu \in A_{\infty}(d\mu)$ ([2]). We say a function is in $A_{\infty}(d\nu)$ on L, provided that (0.1) holds with $d\mu = g d\nu$ for all cubes $Q \subseteq L$.

f|L is quasisymmetric provided that for all $a, b, x \in L$, $|a-x| \le |b-x|$ implies $|f(a)-f(x)| \le c|f(b)-f(x)|$ for some constant c > 0.