SOME NUMERIC RESULTS ON ROOT SYSTEMS

Jian-yi Shi

Abstract

Let Φ be an irreducible root system (sometimes we denote Φ by $\Phi(X)$ to indicate its type X). Choose a simple root system Π in Φ. Let Φ^{+}(resp. Φ^{-}) be the corresponding positive (resp. negative) root system of Φ. By a subsystem Φ^{\prime} of Φ (resp. of Φ^{+}), we mean that Φ^{\prime} is a subset of Φ (resp. of Φ^{+}) which itself forms a root system (resp. a positive root system). We refer the readers to Bourbaki's book for the detailed information about root systems. Among all subsystems of Φ, the subsystems of Φ of rank 2 and of type $\neq A_{1} \times A_{1}$ are of particular importance in the theory of Weyl groups and affine Weyl groups (see the papers by Jian-yi Shi). In the present paper, we shall compute the number of such subsystems of Φ for an irreducible root system Φ of any type. Some interesting properties of Φ are also obtained.

1. The number $h(\alpha)$. Let \langle,$\rangle be an inner product of the euclidean$ space E spanned by Φ. For any $\alpha \in \Phi$, we denote by $|\alpha|$ the length of α, by α^{\vee} the dual root $2 \alpha /\langle\alpha, \alpha\rangle$ of α and by s_{α} the reflection in E which sends any vector $v \in E$ to $s_{\alpha}(v)=v-\left\langle v, \alpha^{\vee}\right\rangle \alpha$. For $\alpha, \beta \in \Phi$, we write $\alpha<\beta$ if $\beta-\alpha$ is a sum of some positive roots.

For $\alpha \in \Phi$, we define the sets $D(\alpha)=\{\beta \in \Phi \mid \alpha+\beta \in \Phi\}$, $D^{+}(\alpha)=D(\alpha) \cap \Phi^{+}$and $D^{-}(\alpha)=D(\alpha) \cap \Phi^{-}$. Let $d(\alpha)$ be the cardinality of the set $D^{+}(\alpha)$. Also, we denote by $\mathrm{ht}(\alpha)$ the height of α, i.e. $\operatorname{ht}(\alpha)=\sum_{\beta \in \Pi} a_{\beta}$ if $\alpha=\sum_{\beta \in \Pi} a_{\beta} \beta$ with $a_{\beta} \in \mathbb{Z}$.

For any $\alpha \in \Phi^{+}$, there exists a sequence ξ of roots $\alpha_{1}=\alpha, \alpha_{2}, \ldots$, α_{r} in Φ^{+}such that $\alpha_{r} \in \Pi$ and for every $i, 1<i \leq r$, we have $\alpha_{i-1}>\alpha_{i}=s_{\delta}\left(\alpha_{i-1}\right)$ for some $\delta_{i} \in \Pi$. Such a sequence ξ is called a root path from α to Π. We denote by $h(\alpha, \xi)$ the length r of ξ. We shall deduce a formula for the number $h(\alpha, \xi)$, from which we shall see that $h(\alpha, \xi)$ is actually independent on the choice of a root path ξ from α to Π but only dependent on the root α.

Note that if the root system Φ contains roots of two different lengths and if $\alpha=\sum_{\beta \in \Pi} a_{\beta} \beta$ is a long root of Φ with $a_{\beta} \in \mathbb{Z}$ then each coefficient a_{β} with β short is divisible by $|\alpha|^{2} /|\beta|^{2}$.

Lemma 1.1. Let $\alpha=\sum_{\beta \in \Pi} a_{\beta} \beta, a_{\beta} \in \mathbb{Z}$, be a root of Φ^{+}and let ξ be a root path from α to Π. Then

