VERTEX OPERATOR CONSTRUCTION OF STANDARD MODULES FOR $A_n^{(1)}$

M. Primc

We generalize the vertex operator formula for the affine Lie algebra $\mathcal{A}_n^{(1)}$ in the "homogeneous picture" and by using it we construct a basis of any given standard $\mathcal{A}_n^{(1)}$ -module parametrized by coloured partitions. We also obtain a similar explicit construction of vacuum spaces of standard $\mathcal{A}_2^{(1)}$ -modules.

1. Introduction. In this paper we give an explicit construction of standard (i.e. integrable highest weight) representations of affine Lie algebra \tilde{g} of the type $A_n^{(1)}$.

As usual, for $\mathfrak{g} = \mathfrak{sl}(n+1, \mathbb{C})$ we fix a Cartan subalgebra \mathfrak{h} and root vectors x_{α} , and we identify $\mathfrak{h} \cong \mathfrak{h}^*$ via bilinear form $\langle x, y \rangle = \operatorname{tr} xy$. We denote by c the canonical central element of the affine Lie algebra $\tilde{\mathfrak{g}}$ and we write $x(i) = x \otimes t^i$ for $x \in \mathfrak{g}$ and $i \in \mathbb{Z}$. As usual we use triangular decompositions

$$\mathfrak{g} = \mathfrak{n}_{-} + \mathfrak{h} + \mathfrak{n}_{+}, \qquad \tilde{\mathfrak{g}} = \tilde{\mathfrak{n}}_{-} + \tilde{\mathfrak{h}} + \tilde{\mathfrak{n}}_{+}.$$

Let $\mathfrak{n}_0 \subset \mathfrak{n}_+$ be the nilpotent radical of a maximal parabolic subalgebra of \mathfrak{g} such that its Levi factor is (isomorphic to) $\mathfrak{gl}(n, \mathbb{C})$. Let $\Gamma = \{\gamma_1, \ldots, \gamma_n\}$ be the set of weights of \mathfrak{n}_0 (see §2). Then

$$\{x_{\beta}(j); \beta \in \Gamma, j \in \mathbb{Z}\}$$

is a commutative family in \tilde{g} .

Let $L(\Lambda)$ be a standard $\tilde{\mathfrak{g}}$ -module with a highest weight vector v_{Λ} . On $L(\Lambda)$ we have a projective representation $\beta \mapsto e_{\beta}$ of the root lattice Q of \mathfrak{g} (see §5). Let

$$x_{\alpha}(\zeta) = \sum_{j \in \mathbf{Z}} x_{\alpha}(j) \zeta^{j}.$$

By using the formal Laurent series technique we extend the vertex operator formula for level 1 $A_n^{(1)}$ -modules and for level $k \ge 1$ $A_1^{(1)}$ -modules to all standard $A_n^{(1)}$ -modules, based on a simple observation that the vertex operator formula for level 1 representation can