ON THE UNIQUENESS OF REPRESENTATIONAL INDICES OF DERIVATIONS OF C*-ALGEBRAS

EDWARD KISSIN

The paper considers some sufficient conditions for a closed *-derivation of a C^* -algebra, implemented by a symmetric operator, to have a unique representational index.

1. Introduction. Let $\mathscr A$ be a C^* -subalgebra of the algebra B(H) of all bounded operators on a Hilbert space H, and let a dense *-subalgebra $D(\delta)$ of $\mathscr A$ be the domain of a closed *-derivation δ from $\mathscr A$ into B(H). A closed operator S on H implements δ if D(S) is dense in H and if

$$AD(S)\subseteq D(S)\quad\text{and}$$

$$\delta(S)|_{D(S)}=i(SA-AS)|_{D(S)}\quad\text{for all }A\in D(\delta)\,.$$

If S is symmetric (dissipative), it is called a symmetric (dissipative) implementation of δ . If a closed operator T extends S and also implements δ , then T is called a δ -extension of S. If S has no δ -extension, it is called a maximal implementation of δ .

If δ is implemented by a closed operator, it always has an infinite set $\mathcal{F}(\delta)$ of implementations. However, not much can be said about the structure of $\mathcal{F}(\delta)$. We do not even know whether it has maximal implementations. The subsets $\mathcal{F}(\delta)$ and $\mathcal{F}(\delta)$ of $\mathcal{F}(\delta)$ ($\mathcal{F}(\delta) \subseteq \mathcal{F}(\delta)$), which consist respectively of symmetric and of dissipative implementations of δ , are more interesting. In [4] it was shown that every symmetric implementation of δ extends to a maximal symmetric implementation of δ . Therefore if $\mathcal{F}(\delta) \neq \emptyset$, then $\mathcal{F}(\delta)$ as well as the set $\mathcal{MF}(\delta)$ of all maximal symmetric implementations of δ are infinite sets.

If $S \in \mathcal{MS}(\delta)$ and it is not selfadjoint, then the question arises as to whether S has dissipative δ -extensions and, if so, whether there exist maximal dissipative implementations of δ . This question was partly answered in [5] where it was established that, under some conditions on δ and S (for example, if $\max(n_-(S), n_+(S)) < \infty$), the maximal dissipative implementations of δ do exist.