FLAT CONNECTIONS, GEOMETRIC INVARIANTS AND THE SYMPLECTIC NATURE OF THE FUNDAMENTAL GROUP OF SURFACES

K. GURUPRASAD

In this paper we associate a new geometric invariant to the space of flat connections on a G (= SU(2))-bundle on a compact Riemann surface M and relate it to the symplectic structure on the space $\operatorname{Hom}(\pi_1(M), G)/G$ consisting of representations of the fundamental group $\pi_1(M)$ of M into G modulo the conjugate action of G on representations.

Introduction. Our setup is as follows. Let G = SU(2) and M be a compact Riemann surface and $E \to M$ be the trivial G-bundle. (Any SU(2)-bundle over M is topologically trivial.) Let \mathscr{C} (resp. \mathscr{C}^*) be the space of all (resp. irreducible) connections and \mathscr{F} (resp. \mathscr{F}^*) the subspace of all (resp. irreducible) flat connections on this G-bundle. We put the Fréchet topology on \mathscr{C} and the subspace topology on \mathscr{F} .

Given a loop $\sigma: S^1 \to \mathscr{F}$, we can extend σ to the closed unit disc $\tilde{\sigma}: D^2 \to \mathscr{C}$, since \mathscr{C} is contractible. On the trivial *G*-bundle $E \times D^2 \to M \times D^2$ we define a "tautological" connection form ϑ_{σ} as follows.

$$\vartheta_{\sigma}|_{(e,t)} = \tilde{\sigma}(t) \quad \forall \ (e,t) \in E \times D^2.$$

Clearly restriction of ϑ_{σ} to the bundle $E \times \{t\} \to M \times \{t\}$ is $\tilde{\sigma}(t) \forall t \in D^2$. Let $K(\theta_{\sigma})$ be the curvature form of ϑ_{σ} . Evaluation of the second Chern polynomial on this curvature form $K(\vartheta_{\sigma})$ gives a closed 4-form on $M \times D^2$, which when integrated along D^2 yields a 2-form on M. This 2-form is closed since dim M = 2 and thus defines an element in $H^2(M, \mathbb{R}) \approx \mathbb{R}$. It is seen that this class is independent of the extension of σ . We thus have a map

$$\chi \colon \Omega(\mathscr{F}) \to H^2(M\,,\,\mathbb{R}) pprox \mathbb{R}$$

where $\Omega(\mathscr{F})$ is the loop space of \mathscr{F} .

It is seen that χ induces a map

$$\overline{\chi} \colon \Omega(\mathscr{F}^*/\mathscr{G}) \to \mathbb{R}/\mathbb{Z}$$

where $\mathscr{G} = \operatorname{Map}(M, G)$ is the gauge group of the G-bundle $E \to M$.