DEC GROUPS FOR ARBITRARILY HIGH EXPONENTS

B. A. SETHURAMAN

For each prime p and each $n \ge 1$ $(n \ge 2$ if p = 2), examples are constructed of a Galois extension K/F whose Galois group has exponent p^n and a central simple F-algebra A of exponent p which is split by K but is not in the Dec group of K/F.

1. Introduction. Let K/F be an abelian Galois extension of fields, and let $G = \mathscr{G}(K/F)$. Let $G = G_1 \times G_2 \times \cdots \times G_k$ be a direct sum decomposition of G into cyclic groups, with $G_i = \langle \sigma_i \rangle$ (i = 1, ..., k). Let F_i be the fixed field of $G_1 \times \cdots \times G_{i-1} \times G_{i+1} \times \cdots \times G_k$ (i = 1, ..., k). Thus, the F_i are cyclic Galois extensions of F, with Galois group isomorphic to G_i . The group Dec(K/F) is defined as the subgroup of Br(K/F) generated by the subgroups $\text{Br}(F_i/F)$ (i = 1, ..., k). This group was introduced by Tignol ([T1]), where he shows that Dec(K/F) is independent of the choice of the direct sum decomposition of G. If p is a prime, we will write $p^n \text{Br}(K/F)$ and $p^n \text{Dec}(K/F)$ for the subgroups of Br(K/F) and Dec(K/F) consisting of all elements with exponent dividing p^n .

A key issue in several past constructions of division algebras has been the non-triviality of the factor group $_p \operatorname{Br}(K/F)/_p \operatorname{Dec}(K/F)$ for suitable abelian extensions K/F. For instance, the Amitsur-Rowen-Tignol construction of an algebra of index 8 with involution with no quaternion subalgebra ([ART]) depends crucially on the existence of a triquadratic extension K/F for which $_2 \operatorname{Br}(K/F) \neq _2 \operatorname{Dec}(K/F)$. Similarly, the constructions of indecomposable algebras of exponent pby Tignol ([T2]) and Jacob ([J]) also depend on the existence of an (elementary) abelian extension K/F for which $_p \operatorname{Br}(K/F) \neq_p \operatorname{Dec}(K/F)$.

The extension fields K/F that occur in these examples above are all of exponent p, and it is an interesting question whether there exist abelian extensions K/F whose Galois groups have arbitrarily high (ppower) exponents for which the factor group $_p \operatorname{Br}(K/F)/_p \operatorname{Dec}(K/F)$ is non-trivial. The purpose of this paper is to show that for each $n \ge 1$ $(n \ge 2$ if p = 2), there exists an abelian extension K/F with Galois group $\mathbb{Z}/p^n\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ (and thus, of exponent p^n) and an algebra $A \in _p \operatorname{Br}(K/F)$ such that $A \notin _p \operatorname{Dec}(K/F)$. (Note that if K/F is an