PRODUCTIVE POLYNOMIALS

RICHARD F. ARENS

The problem addressed is: When is a class B of polynomials in n non-commuting indeterminates closed under substitution into a given polynomial q?

1. Introduction. Let \mathbb{F} be a field and let $\mathbb{F}\langle x_1, \ldots, x_n \rangle$ be the linear algebra of polynomials in the non-commuting indeterminates x_1, \ldots, x_n . Let $q \in \mathbb{F}\langle x_1, \ldots, x_n \rangle$. Let A be an associative¹ algebra over \mathbb{F} . q defines a mapping \hat{q} of $A \times \cdots \times A = A^n$ into A whose value $\hat{q}(a_1, \ldots, a_n)$ at (a_1, \ldots, a_n) is the result of replacing each x_i in q by the corresponding a_i , and then carrying out the algebraic operations proper to A. A linear subspace B of the algebra A will be called q-closed if whenever $\mathbf{A} = (a_1, \ldots, a_n) \in A^n$ then $\hat{q}(\mathbf{a}) \in B$. Let q((B)) be the smallest q-closed linear subspace containing B. We study mainly the case that A is $\mathbb{F}\langle x_1, \ldots, x_n \rangle$ itself, and B is the linear subspace generated by x_1, \ldots, x_n and the unit 1. The q-closed set generated by x_1, \ldots, x_n and 1 will be denoted in this case simply by ((q)).

We will usually use just P to stand for $\mathbb{F}\langle x_1, \ldots, x_n \rangle$. $q \in P$ will be called *productive* if ((q)) = P; and otherwise, *non-productive*.

Two questions interest us:

1.1. When is a given $q \in P$ productive, and

1.2. If it is not, how to find elements p which are not in ((q))?

A clear-cut answer to 1.1 is given by 3.9. An answer to 1.2 is given in $\S4$, illustrated by an example 8.5. We regard q as an *n*-ary operation and prepare a suitable ideal theory.

2. Theorems establishing productivity. Consider $q = x_1x_2$. Then a linear subspace *B* is *q*-closed if it contains the product of any pair of members: *B* is a subalgebra.² Thus, if *B* is the linear subspace generated by x_1, \ldots, x_n and 1, then ((q)) is the algebra generated by x_1, \ldots, x_n and 1. This being P, x_1x_2 is productive.

¹In this paper, all algebras are supposed to be associative, and so we omit the term.

²Note that B is x_1x_2 -closed if and only if it is x_ix_j -closed, where *i*, *j* are any two distinct indices.