# PRODUCTIVE POLYNOMIALS 

Richard F. Arens


#### Abstract

The problem addressed is: When is a class $B$ of polynomials in $n$ non-commuting indeterminates closed under substitution into a given polynomial $q$ ?


1. Introduction. Let $\mathbb{F}$ be a field and let $\mathbb{F}\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be the linear algebra of polynomials in the non-commuting indeterminates $x_{1}, \ldots, x_{n}$. Let $q \in \mathbb{F}\left\langle x_{1}, \ldots, x_{n}\right\rangle$. Let $A$ be an associative ${ }^{1}$ algebra over $\mathbb{F} . q$ defines a mapping $\hat{q}$ of $A \times \cdots \times A=A^{n}$ into $A$ whose value $\hat{q}\left(a_{1}, \ldots, a_{n}\right)$ at $\left(a_{1}, \ldots, a_{n}\right)$ is the result of replacing each $x_{i}$ in $q$ by the corresponding $a_{i}$, and then carrying out the algebraic operations proper to $A$. A linear subspace $B$ of the algebra $A$ will be called $q$-closed if whenever $\mathbf{A}=\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$ then $\hat{q}(\mathbf{a}) \in B$. Let $q((B))$ be the smallest $q$-closed linear subspace containing $B$. We study mainly the case that $A$ is $\mathbb{F}\left\langle x_{1}, \ldots, x_{n}\right\rangle$ itself, and $B$ is the linear subspace generated by $x_{1}, \ldots, x_{n}$ and the unit 1 . The $q$ closed set generated by $x_{1}, \ldots, x_{n}$ and 1 will be denoted in this case simply by ( $(q)$ ).

We will usually use just $P$ to stand for $\mathbb{F}\left\langle x_{1}, \ldots, x_{n}\right\rangle . q \in P$ will be called productive if $((q))=P$; and otherwise, non-productive.

Two questions interest us:
1.1. When is a given $q \in P$ productive, and
1.2. If it is not, how to find elements $p$ which are not in $((q))$ ?

A clear-cut answer to 1.1 is given by 3.9. An answer to 1.2 is given in $\S 4$, illustrated by an example 8.5 . We regard $q$ as an $n$-ary operation and prepare a suitable ideal theory.
2. Theorems establishing productivity. Consider $q=x_{1} x_{2}$. Then a linear subspace $B$ is $q$-closed if it contains the product of any pair of members: $B$ is a subalgebra. ${ }^{2}$ Thus, if $B$ is the linear subspace generated by $x_{1}, \ldots, x_{n}$ and 1 , then $((q))$ is the algebra generated by $x_{1}, \ldots, x_{n}$ and 1 . This being $P, x_{1} x_{2}$ is productive.

[^0]
[^0]:    ${ }^{1}$ In this paper, all algebras are supposed to be associative, and so we omit the term.
    ${ }^{2}$ Note that $B$ is $x_{1} x_{2}$-closed if and only if it is $x_{i} x_{j}$-closed, where $i, j$ are any two distinct indices.

